Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


The Use of the Fitting Time HistoriesMethod to Detect the Nonlinear Behaviour of Laminated Glass

Journal of Vibration Testing and System Dynamics 1(1) (2017) 1--14 | DOI:10.5890/JVTSD.2017.03.001

S. Lenci; L. Consolini; F. Clementi

Department of Civil and Buildings Engineering, and Architecture, Polytechnic University of Marche, via Brecce Bianche, I-60131 Ancona, Italy

Download Full Text PDF

 

Abstract

The experimental free vibrations of a laminated glass beam are inves- tigated with the aim of extracting the nonlinear characteristics of the dynamical behaviour, by an appropriate post-processing of data en- suing from the tests. An updated version of the Fitting Time History (FTH) technique is used. It is based on the least square approx- imation of the measured damped free vibrations of the laminated glass, and provides the optimal values of the natural frequencies and damping coefficients. While in a previous work attention was mainly devoted to the determination of the linear dynamical properties, here the focus is on the nonlinear behaviour, in particular on the nonlinear relationship between the excitation amplitude and: (i) the natural frequencies, a fact that is commonly encountered in nonlinear dy- namics and known as ‘backbone curve’; (ii) the damping coefficient, a fact that is somehow unexpected and commonly not reported in the literature.

Acknowledgments

A preliminary and partial version of this paper is presented in the X International Conference on Structural Dynamics, EURODYN 2017, Rome, Italy, 10-13 Semptember 2017.

References

  1. [1]  Clementi, F., Consolini, L., and Lenci, S. (2015), Dynamic parameters identification of structural laminated glass. In Proc. ASME 2015 Int. Mech. Eng. Cong. & Exposition (IMECE2015), Houston, Texas, USA, Paper IMECE2015-50867. DOI: 10.1115/IMECE2015-50867
  2. [2]  Lenci, S., Consolini, L., and Clementi, F. (2015), On the experimental determination of dynamical properties of laminated glass, Ann. Solid Struct. Mech. 7, 27-43. DOI: 10.1007/s12356-015-0040-z
  3. [3]  Haldimann, M., Luible, A., and Overend, M., (2008), Structural Use of Glass, Structural Engineering Documents, 10, IABSE, Z¨urich.
  4. [4]  Belis, J., Louter, C., Nielsen, J. H., Overend, M., and Schneider, J. (2016), Glass Structures & Engineering, Themed Issue: Challenging Glass, 1. DOI: 10.1007/s40940-016-0031-4
  5. [5]  Campione, G., Di Paola, M., and Minafò, G. (2013), Laminated Glass Members in Compression: Experiments and Modeling, J. Struct. Eng., 140, 04013047. DOI: 10.1061/(ASCE)ST.1943-541X.0000827.
  6. [6]  Ivanov, I.V., Velchev, D.S., Sadowski, T., and Knec,M. (2011), Computationalmodels of laminated glass plate under transverse static loading, in: H. Altenbach, V. Eremeyev (Eds.), Shell-like structures. Non-classical theories and applications, Advanced structured materials, Springer, Berlin, 15, 469-490. DOI: 10.1007/978- 3-642-21855-2.
  7. [7]  Galuppi, L., Massimiani, S., and Royer-Carfagni, G. (2014), Buckling phenomena in double curved cold-bent glass. Int. J. Non-Linear Mech., 64, 70-84. DOI: 10.1016/j.ijnonlinmec.2014.03.015
  8. [8]  Galuppi, L. and Royer-Carfagni, G. (2016), A homogenized model for the post-breakage tensile behavior of laminated glass, Composite Structures, 154, 600-615. DOI: 10.1016/j.compstruct.2016.07.052
  9. [9]  Colomer Segura, C. and Feldmann, M. (2011), Characterisation of the dynamic behaviour of laminated sheet glass in steel-glass façades, in: J. Náprstek et al. (Eds.), Vibration problems ICOVP 2011: the 10th International Conference on Vibration Problems, Springer, Proceedings in Physics 139, 289–295. DOI: 10.1007/978- 94-007-2069-5 40.
  10. [10]  Aenlle, M.L. and Pelayo, F. (2013), Frequency response of laminated glass elements: analytical modeling and effective thickness, Appl. Mech. Rev., 65(020802). DOI: 10.1115/1.4023929
  11. [11]  Hooper, P.A., Sukhram, R.A.M., Blackman, B.R.K., and Dear, J.P. (2012), On the blast resistance of lami- nated glass, Int. J. Solids Struct. 49, 899–918. DOI: 10.1016/j.ijsolstr.2011.12.008.
  12. [12]  Venkatanarayanan, P.S. and Stanley, A.J. (2012), Intermediate velocity bullet impact response of lami- nated glass fiber reinforced hybrid (HEP) resin carbon nano composite, Aerosp. Sci. Tech. 21, 75-83. DOI: 10.1016/j.ast.2011.05.007.
  13. [13]  Akrout, A., Hammami, L., Tahar, M.B., and Haddar, M. (2009), Vibroacoustic behaviour of laminated double glazing enclosing a visco-thermal fluid cavity, Appl. Acoust., 70, 82-96. DOI: Vibroacoustic behaviour of laminated double glazing enclosing a visco-thermal fluid cavity.
  14. [14]  De Belder, K., Pintelon, R., Demol, C., and Roose, P. (2010), Estimation of the equivalent complex modulus of laminated glass beams and its application to sound transmission loss prediction, Mech. Syst. Signal Process. 24, 809-822. DOI: 10.1016/j.ymssp.2009.11.001.
  15. [15]  Aşik, M.Z., Laminated glass plates: revealing of nonlinear behavior, Computers and Structures, 81, 2659- 2671. DOI: 10.1016/S0045-7949(03)00325-0.
  16. [16]  Lenci, S. and Warminski, J. (2012), Free and forced nonlinear oscillations of a two-layer composite beam with interface slip, Nonlinear Dyn., 70, 2071-2087. DOI: 10.1007/s11071-012-0599-4.
  17. [17]  Ozcelik, O. and Attar, P.J., (2014), Effect of non-linear damping on the structural dynamics of flapping beam, Int. J. Non-linear Mech., 65, 148-163. DOI: 10.1016/j.ijnonlinmec.2014.05.005.
  18. [18]  Balasubramaniana, P., Ferraria, G., Amabili, M., and del Prado, Z.J.G.N., Experimental and theoretical study on large amplitude vibrations of clamped rubber plates, Int. J. Non-linear Mech., submitted.
  19. [19]  Warminsky, J., Lenci, S., Cartmell, M.P., Rega, G., and Wiercigroch, M. (2012), Nonlinear Dynamics Phe- nomena in Mechanics, Springer-Verlag. ISBN 978-94-007-2472-3, e-ISBN 978-94-00773-0.
  20. [20]  Papagiannopoulos, G.A. and Hatzigeorgiou, G.D. (2011), On the use of the half-power bandwidth method to estimate damping in building structures, Soil Dynamics and Earthquake Engineering, 31, 1075-1079. DOI: 10.1016/j.soildyn.2011.02.007.