Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal

Email: aml@fe.up.pt

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email: jzzhang@mail.xjtu.edu.cn


Different textit{M'{e}tiers} Affect Fish Catches Accounting in Marine Protected Areas: A Pilot Investigation Method

Journal of Environmental Accounting and Management 10(3) (2022) 237--252 | DOI:10.5890/JEAM.2022.09.003

L. Appolloni${}^{1}$, D. Ciorciaro${}^{1}$, F. Di Stefano${}^{1}$, L. Donnarumma ${}^{1}$, F. Ferrigno${}^{1}$, C. Iacono${}^{2}$,\\ A. Miccio${}^{3}$, F. Rendina${}^{1}$, R. Sandulli${}^{1}$, G.F. Russo${}^{1}$

$^1$ Department of Science and Technology (DiST), Marine Ecology Laboratory, Parthenope University of Naples, Italy

$^2$ Marine Protected Area ``Regno di Nettuno''

$^3$ Marine Protected Area ``Punta Campanella''

Download Full Text PDF

 

Abstract

The present investigation is a pilot study, carried out in a single season, aiming to account for the effects of local Small-Scale Fishery (SSF) m\'{e}tiers on actual catches, as recommended by the Ecosystem Based Management. According to local m\'{e}tiers, 3 trammel nets (GTR) and 3 longlines (LLS) were hauled for 8 hours in 4 Marine Protected Areas (MPAs) of Campania Region (central Tyrrhenian Sea): Regno di Nettuno (RN) and Punta Campanella (PC), in the northernmost Gulf of Naples, Santa Maria di Castellabate (SMC) and Costa degli Infreschi e della Masseta (CI), along the southernmost coasts of Cilento National Park. PERMANOVA analyses were performed to assess differences in GTR and LLS catches among MPAs; CAP analyses were used to assess similarities among MPAs catches; PERMDISP analyses were performed to verify small scale data homogeneity and comparability; ABCurves were used to assess MPAs fish assemblages quality status. Results show that GTR catches are higher than those of LLS in terms of fish diversity, abundance and biomass. Instead, LLS catches are more selective for a few target species and for larger specimens. PERMANOVA results highlight significant differences of both GTR and LLS data among MPAs, but pair-wise test indicates that LLS catches are more affected by local m\'{e}tiers linked to MPAs environmental characteristics. CAP analyses show that GTR species are coherently correlated with northernmost and southernmost MPAs while, species from LLS are correlated with the morphological characteristics (steep or flat bottoms) of the MPAs. PERMDISP reveals homogeneity among GTR data but not among LLS ones. ABCurves evidence that GTR, due to its low selectivity, is a suitable gear to monitoring MPAs fish assemblage. On the contrary, the high selective of LLS makes it an effective gear to provide data about the main target species of local m\'{e}tiers useful to define more effective MPA management measures.

References

  1. [1]  Albouy, C., Mouillot, D., Rocklin, D., Culioli, J.M., and Le Loc'h, F. (2010), Simulation of the combined effects of artisanal and recreational fisheries on a mediterranean MPA ecosystem using a trophic model, Marine Ecology Progress Sereries, 412, 207-221, https://doi.org/10.3354/meps08679.
  2. [2]  Anderson, M.J. (2001a), A new method for non parametric multivariate analysis of variance, Austral Ecology, 26, 32-46, https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.
  3. [3]  Anderson, M.J. (2001b), Permutation tests for univariate or multivariate analysis of variance and regression, Canadian Journal of Fisheries and Aquatic Sciences, 58, 626-639, https://doi.org/10.1139/cjfas-58-3-626.
  4. [4]  Anderson, M. and Braak, C.T. (2003), Permutation tests for multi-factorial analysis of variance, Journal of Statistical Computation and Simulation, 73(2), 85-113, https://doi.org/10.1080/00949650215733.
  5. [5]  Anderson, M.J. and Willis, T.J. (2003), Canonical Analysis of Principal Coordinates?: A Useful Method of Constrained Ordination for Ecology, Ecology, 84, 511-525.
  6. [6]  Anderson, M.J., Ellingsen, K.E., and McArdle, B.H. (2006), Multivariate dispersion as a measure of beta diversity, Ecological Letters, 9, 683-93, https://doi.org/10.1111/j.1461-0248.2006.00926.x.
  7. [7]  Appolloni, L., Bevilacqua, S., Sbrescia, L., Sandulli, R., Terlizzi, A., and Russo, G.F. (2017), Does full protection count for the maintenance of $\beta$-diversity patterns in marine communities? Evidence from Mediterranean fish assemblages, Aquatic Conservation, Marine and Freshwater Ecosystems, 27, 828-838, https://doi.org/10.1002/aqc.2750.
  8. [8]  Appolloni, L., Sandulli, R., Vetrano, G., and Russo, G.F. (2018a), A new approach to assess marine opportunity costs and monetary values-in- use for spatial planning and conservation; the case study of Gulf of Naples, Mediterranean Sea, Italy, Ocean and Coastal Management, 152, 135-144, https://doi.org/10.1016/j.ocecoaman.2017.11.023.
  9. [9]  Appolloni, L., Sandulli, R., Vetrano, G., and Russo, G.F. (2018b), Assessing the effects of habitat patches ensuring propagule supply and different costs inclusion in marine spatial planning through multivariate analyses, Journal of Environmental Management, 214, 45-55, https://doi.org/10.1016/j.jenvman.2018.02.091.
  10. [10]  Appolloni, L., Sandulli, R., Bianchi, C.N., and Russo, G.F. (2018c), Spatial analyses of an integrated landscape-seascape territorial system: The case of the overcrowded Gulf of Naples, Southern Italy, Journal of Environmental Accounting and Management, 6, 365-380, https://doi.org/10.5890/JEAM.2018.12.009.
  11. [11]  Appolloni, L., Ferrigno, F., Russo, G.F., and Sandulli, R. (2020), $\beta$-Diversity of morphological groups as indicator of coralligenous community quality status, Ecological Indicators, 109, https://doi.org/10.1016/j.ecolind.2019.105840
  12. [12]  Badalamenti, F., Ramos, A.A., Voultsiadou, E., Lizaso, J.L.S., D'Anna, G., Pipitone, C., Mas, J., Ruiz Fernandez, J.A., Whitmarsh, D., and Riggio, S. (2000), Cultural and socio-economic impacts of Mediterranean marine protected, Environmental Conservation, 27, 110-125.
  13. [13]  Batista, M.I., Teixeira, C.M., and Cabral, H.N. (2009), Catches of target species and bycatches of an artisanal fishery: The case study of a trammel net fishery in the Portuguese coast, Fisheries Research, 100, 167-177, https://doi.org/10.1016/j.fishres.2009.07.007.
  14. [14]  Battaglia, P., Andaloro, F., Consoli, P., Ped\`{a}, C., Raicevich, S., Spagnolo, M., and Romeo, T. (2017), Baseline data to characterize and manage the small-scale fishery (SSF) of an oncoming Marine Protected Area (Cape Milazzo, Italy) in the western Mediterranean Sea, Ocean and Coastal Management, 148, 231-244, https://doi.org/10.1016/j.ocecoaman.2017.08.014.
  15. [15]  Bobori, D.C. and Salvarina, I. (2010), Seasonal variation of fish abundance and biomass in gillnet catches of an East Mediterranean lake: Lake Doirani, Journal of Environmental Biology, 31, 995-1000.
  16. [16]  Buonocore, E., Picone, F., Donnarumma, L., Russo, G.F., and Franzese, P.P. (2019), Modeling matter and energy flows in marine ecosystems using emergy and eco-exergy methods to account for natural capital value, Ecological Modelling, 392, 137-146, https://doi.org/10.1016/j.ecolmodel.2018.11.018.
  17. [17]  Buonocore, E., Donnarumma, L., Appolloni, L., Miccio, A., Russo, G.F., and Franzese, P.P. (2020a), Marine natural capital and ecosystem services: An environmental accounting model, Ecological Modelling, 424, 109029, https://doi.org/10.1016/j.ecolmodel.2020.109029.
  18. [18]  Buonocore, E., Appolloni, L., Russo, G.F., and Franzese, P.P. (2020b), Assessing natural capital value in marine ecosystems through an environmental accounting model: A case study in Southern Italy, Ecological Modelling, 419, 108958, https://doi.org/10.1016/j.ecolmodel.2020.108958.
  19. [19]  Chollett, I., Box, S.J., and Mumby, P.J. (2016), Quantifying the squeezing or stretching of fisheries as they adapt to displacement by marine reserves, Conservation Biology, 30, 166-175, https://doi.org/10.1111/cobi.12573.
  20. [20]  Clarke, K.R., Gorley, R.N., Somerfield, P.J., and Warwick, R.M. (2014), Change in marine communities?: An approach to statistical analysis and interpretation, 3nd ed. PRIMER-E: Plymouth.de.
  21. [21]  Ruggiero, P. (2013), A high-resolution ocean circulation model of the Gulf of Naples and adjacent areas, Il nuovo Cimento C, 36, 143-150, https://doi.org/10.1393/ncc/i2013-11549-7.
  22. [22]  de Ruggiero, P., Napolitano, E., Iacono, R., and Pierini, S. (2016), A high-resolution modelling study of the circulation along the Campania coastal system, with a special focus on the Gulf of Naples, Continental Shelf Research, 122, 58-101.
  23. [23]  Di Nora, T., Agnesi, S., La Mesa, G., Pulcini, M., and Tunesi, L. (2015), Studies to support the establishment of a Marine Protected Area: an opportunity to apply the ICZM principles, Reticula, 10, 17-21.
  24. [24]  Donnarumma, L., Sandulli, R., Appolloni, L., Di Stefano, F., and Fulvio Russo, G. (2018a), Morpho-structural and ecological features of a shallow vermetid bioconstruction in the Tyrrhenian Sea (Mediterranean Sea, Italy), Journal of Sea Research, 131, 61-68, https://doi.org/10.1016/j.seares.2017.10.004
  25. [25]  Donnarumma, L., Sandulli, R., Appolloni, L., and Russo, G.F. (2018b), Assessing molluscs functional diversity within different coastal habitats of Mediterranean marine protected areas, Ecological Questions, 29, 35-51, http://dx.doi.org/ 10.12775/EQ.2018.02
  26. [26]  Erzini, K., Monteiro, C.C., Ribeiro, J., Santos, M.N., Gaspar, M., Monteiro, P., and Borges, T.C. (1997), An experimental study of gill net and trammel net ``ghost fishing'' off the Algarve (southern Portugal), Marine Ecology Progress Sereries, 158, 257-265, https://doi.org/10.3354/meps158257.
  27. [27]  Falautano, M., Castriota, L., Cillari, T., Vivona, P., Finoia, M.G., and Andaloro, F. (2018), Characterization of artisanal fishery in a coastal area of the Strait of Sicily (Mediterranean Sea): Evaluation of legal and IUU fishing, Ocean and Coastal Management, 151, 77-91, https://doi.org/10.1016/j.ocecoaman.2017.10.022.
  28. [28]  Ferrigno, F., Appolloni, L., Russo, G.F., and Sandulli, R. (2018), Impact of fishing activities on different coralligenous assemblages of Gulf of Naples (Italy). Journal of Marine Biologi association, United Kingdom, 98, 1-10, https://doi.org/10.1017/S0025315417001096.
  29. [29]  Franzese, P.P., Buonocore, E., Paoli, C., Massa, F., Donati, S., Fanciulli, G., Miccio, A., Mollica, E., Navone, A., Russo, G.F., Povero, P., and Vassallo, P. (2015), Environmental Accounting in Marine Protected Areas: the EAMPA Project, Journal of Environmental Management, 3, 324-332. https://doi.org/10.5890/JEAM.2015.12.002
  30. [30]  Franzese, P.P., Buonocore, E., Donnarumma, L., and Russo, G.F. (2017), Natural capital accounting in marine protected areas: The case of the Islands of Ventotene and S. Stefano (Central Italy), Ecological Modelling, 36, 290-299, https://doi.org/10.1016/j.ecolmodel.2017.07.015.
  31. [31]  Froese, R. and Pauly, D. (2012), FishBase: world wide web electronic publication, version (09/2010). URL: www.fishbase.org.
  32. [32]  Grekov, A.A. and Pavlenko, A.A. (2011), A comparison of longline and trawl fishing practices and suggestions for encouraging the sustainable management of fisheries in the Barents Sea. NEAFC. Consolidated text of all NEAFC recommendations on regulating bottom fishing, 1-50.
  33. [33]  Guidetti, P., Milazzo, M., Bussotti, S., Molinari, A., Murenu, M., Pais, A., Span\`{o}, N., Balzano, R., Agardy, T., Boero, F., Carrada, G., Cattaneo-Vietti, R., Cau, A., Chemello, R., Greco, S., Manganaro, A., Notarbartolo di Sciara, G., Russo, G.F., and Tunesi, L. (2008), Italian marine reserve effectiveness: Does enforcement matter? Biological Conservation, 141, 699-709, https://doi.org/10.1016/j.biocon.2007.12.013.
  34. [34]  Guidetti, P., Baiata, P., Ballesteros, E., Di Franco, A., Hereu, B., Macpherson, E., Micheli, F., Pais, A., Panzalis, P., Rosenberg, A.A., Zabala, M., and Sala, E. (2014), Large-scale assessment of mediterranean marine protected areas effects on fish assemblages, PLoS One, 9, e91841. https://doi.org/10.1371/journal.pone.0091841.
  35. [35]  Kaiser, M.J., Spence, F.E., and Hart, P.J.B. (2000), Fishing-gear restrictions and conservation of benthic habitat complexity, Conservation Biology, 14, 1512-1525, https://doi.org/10.1046/j.1523-1739.2000.99264.x.
  36. [36]  Katsanevakis, S., Stelzenm\"{u}ller, V., South, A., S{\o}rensen, T.K., Jones, P.J.S., Kerr, S., Badalamenti, F., Anagnostou, C., Breen, P., Chust, G., D'Anna, G., Duijn, M., Filatova, T., Fiorentino, F., Hulsman, H., Johnson, K., Karageorgis, A.P., Kr\"{o}ncke, I., Mirto, S., Pipitone, C., Portelli, S., Qiu, W., Reiss, H., Sakellariou, D., Salomidi, M., van Hoof, L., Vassilopoulou, V., Vega Fern{a}ndez, T., V\"{o}ge, S., Weber, A., Zenetos, A., and Hofstede, R.T. (2011), Ecosystem-based marine spatial management: Review of concepts, policies, tools, and critical issues, Ocean and Coastal Management, 54, 807-820, https://doi.org/10.1016/j.ocecoaman.2011.09.002.
  37. [37]  Kolding, J., B{e}n{e}, C., and Bavinck, M. (2014), Small-scale fisheries: Importance, vulnerability and deficient knowledge, in: Garcia, S., Rice, J., Charles, A. (Eds.), Governance of Marine Fisheries and Biodiversity Conservation: Interaction and Co-Evolution. Wiley-Blackwell, 317-331, https://doi.org/10.1002/9781118392607.ch22.
  38. [38]  Leleu, K., Pelletier, D., Charbonnel, E., Letourneur, Y., Alban, F., Bachet, F., and Boudouresque, C.F. (2014), M{e}tiers, effort and catches of a Mediterranean small-scale coastal fishery: The case of the C\^{O}te Bleue Marine Park, Fishery Research, 154, 93-101, https://doi.org/10.1016/j.fishres.2014.02.006.
  39. [39]  Lloret, J. and Font, T. (2013), A comparative analysis between recreational and artisanal fisheries in a Mediterranean coastal area, Fisheries Management and Ecology, 20, 148-160, https://doi.org/10.1111/j.1365-2400.2012.00868.x.
  40. [40]  Mallol, S. and Go\~{n}i, R. (2019), Unintended changes of artisanal fisheries m{e}tiers upon implementation of an MPA, Marine Policy, 101, 237-245, https://doi.org/10.1016/j.marpol.2017.10.043.
  41. [41]  Marengo, M., Durieux, E.D.H., Marchand, B., and Francour, P. (2014), A review of biology, fisheries and population structure of Dentex dentex (Sparidae), Rev. Reviews in Fish Biology and Fisheries, 24, 1065-1088, https://doi.org/10.1007/ s11160-014-9363-9.
  42. [42]  Margules, C.R. and Pressey, R.L. (2000), Systematic conservation planning, Nature, 405, 243-253, https://doi.org/10.1038/ 35012251.
  43. [43]  Mati{c}-Skoko, S., Stagli\v{c}i{c}, N., Pallaoro, A., Kraljevi{c}, M., Dul\v{c}i{c}, J., Tutman, P., and Dragi\v{c}evi{c}, B. (2011), Effectiveness of conventional management in Mediterranean type artisanal fisheries, Estuarine, Coastal and Shelf Science, 91, 314-324, https://doi.org/10.1016/j.ecss.2010.10.029.
  44. [44]  McCook, L.J., Ayling, T., Cappo, M., Choat, J.H., Evans, R.D., De Freitas, D.M., Heupel, M., Hughes, T.P., Jones, G.P., Mapstone, B., Marsh, H., Mills, M., Molloy, F.J., Pitcher, C.R., Pressey, R.L., Russ, G.R., Sutton, S., Sweatman, H., Tobin, R., Wachenfeld, D.R., and Williamson, D.H. (2010), Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves, Proceedings of the National Academy of Sciences of the United States of America, 107, 18278-18285, https://doi.org/10.1073/pnas.0909335107.
  45. [45]  Naidoo, R., Balmford, A., Ferraro, P.J., Polasky, S., Ricketts, T.H., and Rouget, M. (2006), Integrating economic costs into conservation planning, Trends in Ecology and Evolution, 21, 681-687, https://doi.org/10.1016/j.tree.2006.10.003.
  46. [46]  N{e}d{e}lec, C. and Prado, J. (1990), Definition and classification of fishing gear categories. FAO.
  47. [47]  Newman, S.J., Harvey, E.S., Rome, B.M., McLean, D.L., and Skepper, C.L. (2012), Relative efficiency of fishing gears and investigation of resource availability in tropical demersal scalefish fisheries, Final Report FRDC Project No. 2006/031. Fisheries Research Report, 231, 1-72.
  48. [48]  Olguner, M.T. and Deval, M.C. (2013), Catch and selectivity of 40 and 44 mm trammel nets in small-scale fisheries in the Antalya Bay, Eastern Mediterranean. Ege Journal of Fisheries and Aquatic Sciences, 30, 167-173, https://doi.org/10.12714/egejfas.2013.30.4.04.
  49. [49]  Oliveira, A.G., Gomes, L.C., Latini, J.D., and Agostinho, A.A. (2014), Implications of using a variety of fishing strategies and sampling techniques across different biotopes to determine fish species composition and diversity, Natureza $\&$ Conserva\c{c\~{a}o}, 12, 112-117, https://doi.org/10.1016/j.ncon.2014.08.004.
  50. [50]  Padilla-Serrato, J., L{o}pez-Mart{i}nez, J., Rodr{i}guez-Romero, J., Acevedo-Cervantes, A., Galv{a}n-Maga\~{n}a, F., Lluch-Cota, D. (2017), Changes in fish community structures in a coastal lagoon in the Gulf of California, M{e}xico, Revista de biolog{ia marina y oceanograf{i}a}, 52, 567-579, https://doi.org/10.4067/s0718-19572017000300013.
  51. [51]  Pauna, V.H., Picone, F., Le Guyader, G., Buonocore, E., and Franzese, P.P. (2018), The scientific research on ecosystem services: A bibliometric analysis, Ecological Questions, 29, 53-62, https://doi.org/10.12775/EQ.2018.022.
  52. [52]  Pennino, M.G., Bevilacqua, A.H., Torres, M.A., Bellido, J.M., Sole, J., Steenbeek, J., and Coll, M. (2020), Discard ban: A simulation-based approach combining hierarchical Bayesian and food web spatial models, Marine Policy, 116, 103703, https://doi.org/10.1016/j.marpol.2019.103703.
  53. [53]  Prato, G., Barrier, C., Francour, P., Cappanera, V., Markantonatou, V., Guidetti, P., Mangialajo, L., Cattaneo-Vietti, R., and Gascuel, D. (2016), Assessing interacting impacts of artisanal and recreational fisheries in a small Marine Protected Area (Portofino, NW Mediterranean Sea), Ecosphere, 7, 1-18, https://doi.org/10.1002/ecs2.1601.
  54. [54]  Quetglas, A., Merino, G., Ordines, F., Guijarro, B., Garau, A., Grau, A.M., Oliver, P., and Massut{i}, E. (2016), Assessment and management of western Mediterranean small-scale fisheries, Ocean and Coastal Management, 133, 95-104, https://doi.org/10.1016/j.ocecoaman.2016.09.013.
  55. [55]  Rendina, F., Bouchet, P.J., Appolloni, L., Russo, G.F., Sandulli, R., Kolzenburg, R., Putra, A., and Ragazzola, F. (2019), Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events, Marine Environmental Research, 150, 104764, https://doi.org/ 10.1016/j.marenvres.2019.104764.
  56. [56]  Roditi, K., Halkos, G., Matsiori, S., Vafidis, D. (2018), Socioeconomic aspects and characteristics of small-scale fishery in eastern Mediterranean Sea, MPRA, 85221, 1-26.
  57. [57]  Roditi, K. and Vafidis, D. (2019), Net fisheries'm{e}tiers in the eastern Mediterranean: Insights for small-scale fishery management on Kalymnos Island, Water (Switzerland), 11, 1-17, https://doi.org/10.3390/w11071509.
  58. [58]  Roditi, K., Antoniadou, C., Matsiori, S., Halkos, G., and Vafidis, D. (2020), Longline m{e}tiers and associated economic profiles in eastern Mediterranean fisheries: The case study of Kalymnos Island (South Aegean Sea), Ocean and Coastal Management, 195, 105275, https://doi.org/10.1016/j.ocecoaman.2020.105275.
  59. [59]  Sala, A. and Lucchetti, A. (2010), The effect of mesh configuration and codend circumference on selectivity in the Mediterranean trawl Nephrops fishery, Fisheries Research, 103, 63-72, https://doi.org/10.1016/j.fishres.2010.02.003.
  60. [60]  Salda\~{n}a, A., Salas, S., Arce-Ibarra, A.M., and Torres-Irineo, E. (2017), Fishing operations and adaptive strategies of small-scale fishers: insights for fisheries management in data-poor situations, Fisheries Management and Ecology, 24, 19-32, https://doi.org/10.1111/fme.12199.
  61. [61]  Samy-Kamal, M., Forcada, A., and S{a}nchez-Lizaso, J.L. (2014), Trawling fishery of the western Mediterranean Sea: M{e}tiers identification, effort characteristics, landings and income profiles, Ocean and Coastal Management, 102, 269-284, https://doi.org/10.1016/j.ocecoaman.2014.10.005.
  62. [62]  Schuhbauer, A. and Sumaila, U.R. (2016), Economic viability and small-scale fisheries - A review. Ecological Economis, 124, 69-75, https://doi.org/10.1016/j.ecolecon.2016.01.018.
  63. [63]  Sinopoli, M., Castriota, L., Vivona, P., Gristina, M., and Andaloro, F. (2012), Assessing the fish assemblage associated with FADs (Fish Aggregating Devices) in the southern Tyrrhenian Sea using two different professional fishing gears, Fisheries Research, 123-124, 56-61, https://doi.org/10.1016/j.fishres.2011.11.020.
  64. [64]  Swimmer, Y., Suter, J., Arauz, R., Bigelow, K., L{o}pez, A., Zanela, I., Bolanos, A., Ballestero, J., Su{a}rez, R., and Wang, J. (2011), Sustainable fishing gear: the case of modified circle hooks in a Costa Rican longline fishery, Marine Biology, 158, 757-767.
  65. [65]  Terlizzi, A., Anderson, M.J., Fraschetti, S., and Benedetti-Cecchi, L. (2007), Scales of spatial variation in Mediterranean subtidal sessile assemblages at different depths, Marine Ecology Progress Series, 332, 25-39, https://doi.org/10.3354/ meps332025.
  66. [66]  Ulrich, C., Wilson, D.C.K., Nielsen, J.R., Bastardie, F., Reeves, S.A., Andersen, B.S., and Eigaard, O.R. (2012), Challenges and opportunities for fleet- and m{e}tier-based approaches for fisheries management under the European Common Fishery Policy, Ocean and Coastal Management, 70, 38-47, https://doi.org/10.1016/j.ocecoaman.2012.06.002.
  67. [67]  Vassallo, P., Paoli, C., Buonocore, E., Franzese, P.P., Russo, G.F., and Povero, P. (2017), Assessing the value of natural capital in marine protected areas: A biophysical and trophodynamic environmental accounting model, Ecological Modelling, 355, 12-17, https://doi.org/10.1016/j.ecolmodel.2017.03.013.
  68. [68]  Yemane, D., Field, J.G., and Leslie, R.W. (2005), Exploring the effects of fishing on fish assemblages using Abundance Biomass Comparison (ABC) curves. ICES Journal of Marine Science, 62, 374-379, https://doi.org/10.1016/ j.icesjms.2005.01.009.