Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal

Email: aml@fe.up.pt

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email: jzzhang@mail.xjtu.edu.cn


Sustainability Assessment of Intensive Agriculture in Argentina. Focus on Upstream (Emergy) and Downstream (Emissions) Environmental Impacts

Journal of Environmental Accounting and Management 4(4) (2016) 369--383 | DOI:10.5890/JEAM.2016.12.002

Mariana Totino$^{1}$,$^{2}$; Silvia D. Matteucci$^{1}$,$^{2}$

$^{1}$ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

$^{2}$ Universidad de Buenos Aires, Facultad de Arquitectura, Diseño y Urbanismo, Grupo de Ecología de Paisajes y Medio Ambiente (GEPAMA), Buenos Aires, Argentina

Download Full Text PDF

 

Abstract

After the Industrial Revolution the agricultural sector was one of the most transformed. The activity releases CO2 and generates a change in land use, advancing on ecosystems with native vegetation, which function as carbon sinks. The model of industrial agriculture is highly dependent on inputs in the form of materials and energy, mainly fossil fuels but there are other hidden constraints that rely on the environmental quality of resources used and the extent of downstream impacts generated by their use in a process, that do not emerge clearly from investigating only material and commercial energy. As a consequence, additional investigation with alternative approaches, like emergy and emission assessment, is needed. In this article the analysis focuses on the emergy assessment and pollutant emissions by soybean production in two Argentine localities with environmental differences, one in the province of Buenos Aires (Rojas) and the other in the Chaco province (Charata). We used an upstream method (Emergy Accounting) and a downstream method (CML2 baseline 2000). Both sites show Renewability smaller than 35%. The total amount of CO2eq emitted in Charata is 0.80 ton/ha/yr and 0.81 ton/ha/yr in Rojas. However, the local conditions, the impact of industrial agriculture is very high. In Chaco region, possible regulations that establish the afforestation of certain areas around soybean crops should be analyzed, to operate not only as carbon sinks but also as barriers for agrochemical drift.

References

  1. [1]  Adámoli, J., Torrella, S. and Ginzburg, R. (2011), El bosque de tres Quebrachos. Un proyecto para la conservación de los bosques más amenazados del Chaco. Grupo de Estudios de Sistemas Ecológicos en Ambientes Agrícolas (GESEAA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. (in Spanish)
  2. [2]  Agostinho, F. and Ortega, E. (2012), Integrated food, energy and environmental services production as an alternative for small rural properties in Brazil, Energy 37, 103-114.
  3. [3]  Agostinho, F. and Ortega, E. (2013), Avaliação energético-ambiental da produção agropecuária na bacia hidrográfica dos rios Mogi- Guaçú e Pardo, Brasil, Revista Iberoamericana de Economía Ecológica 20, 1-16. (in Portuguese)
  4. [4]  Agostinho, F. and Pereira, L. (2013), Support area as an indicator of environmental load: Comparison between Embodied Energy, Ecological Footprint, and Emergy Accounting methods, Ecological Indicators 24, 494-503.
  5. [5]  Agostinho, F. and Siche, R. (2014), Hidden costs of a typical embodied energy analysis: Brazilian sugarcane ethanol as a case study, Biomass and Bioenergy 71, 69-83.
  6. [6]  Beltran, L.R. (1971), La "Revolución Verde" y el desarrollo rural latinoamericano. Desarrollo Rural de las Américas, vol III, no 1. Instituto Interamericano de Ciencias Agrícolas de la OEA. Centro Interamericano de Desarrollo Rural y Reforma Agraria.
  7. [7]  Brandt-Williams, S. (2002), Folio #4: Emergy of Florida Agriculture. Handbook of Emergy Evaluation: A compendium of data for emergy computation issued in a series of folios. Center for Environmental Policy, Univ. of Florida, Gainesville.
  8. [8]  Brown, M.T., Brandt-Williams, S., Tilley, D. and Ulgiati, S. (2001), Emergy Synthesis: An Introduction. In: Brown M.T., ed. Emergy Synthesis 1: Theory and Applications of the Emergy Methodology. Proceedings of the 1st Biennial Emergy Conference. Center for Environmental Policy, University of Florida, Gainesville.
  9. [9]  Brown, M.T. and Ulgiati, S. (2004a), Emergy analysis and environmental accounting, Encyclopedia of Energy 2, 329-354.
  10. [10]  Brown, M.T. and Ulgiati, S, (2004b), Energy quality, emergy, and transformity: H.T. Odum's contributions to quantifying and understanding systems, Ecological Modelling 178, 201-213.
  11. [11]  Brown, M.T. and Ulgiati, S. (2010), Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline, Ecological Modelling 221, 2501-2508.
  12. [12]  Bonino, E.E. (2006), Changes in carbon pools associated with a land-use gradient in the Dry Chaco, Argentina, Forest Ecology and Management 223, 183-18.
  13. [13]  Buenfill A.A. (2000), Sustainable Use of Potable Water in Florida: an Emergy Analysis of Water Supply and Treatment Alternatives In: Brown M.T., Brandt-Williams S., Tilley D., Ulgiati S. (Eds.), EMERGY SYNTHESIS. Theory and Applications of the Emergy Methodology. H.T. Odum Center for Environmental Policy, University of Florida, Gainesville, Florida, USA.
  14. [14]  Campbell, D.E., Brandt-Williams, S.L. and Cai, T. (2005), Current Technical Problems in Emergy Analysis. In: Brown M.T., Bardi E., Campbell D.E., Comar V., Huang S., Rydberg T., Tilley D. and Ulgiati S., eds. Emergy Synthesis 3: Theory and Applications of the Emergy Methodology. Proceedings of the 3rd Biennial Emergy Conference. Center for Environmental Policy, University of Florida, Gainesville.
  15. [15]  Cavalett, O. (2008), Análise de ciclo de vida da soja. Universidade Estadual de Campinas, Sao Pablo, Brasil. PhD Thesis available in: www.unicamp.br/fea/ortega/extensao/extensao.htm. (in Portuguese)
  16. [16]  Centre of Environmental Science, Leiden University, NL (2001), http://www.leidenuniv.nl/cml/ssp/projects/lca2/index.html.
  17. [17]  CORINAIR and IPCC-EEA (2009), Emission Inventory Guidebook. Compilation of air pollutant emission factors- Volme 1 5th Ediction, Point Sources AP-42.
  18. [18]  Davidson, E.A. and Ackerman, I.L. (1993), Changes in soil carbon inventories following cultivation of previously untilled soils, Biogeochemistry 20, 161-193.
  19. [19]  Dick, W.A., Blevins, R.L., Frye, W.W., Peters, S.E., Christenson, D.R., Pierce, F.J. and Vitosh, M.L. (1998), Impacts of agricultural management practices on C sequestration in forest-derived soils of the eastern Corn Belt, Soil & Tillage Research 47: 235-244.
  20. [20]  EMEP/EEA air pollutant emission inventory guidebook (2013), Technical guidance to prepare national emission inventories. EEA Technical report No 12/2013.
  21. [21]  Evrendilek, F., Celik, I. and Kilic, S. (2004), Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grass- land, and cropland ecosystems in Turkey, Journal of Arid Environments. 59, 743-752.
  22. [22]  FAO (2006), Forest Resources Assessment. Roma, Italia.
  23. [23]  Franzese, P.P., Cavalett, O., Häyhä, T. and D'Angelo, S. (2013), Integrated Environmental Assessment of Agricultural and Farming Production Systems in the Toledo River Basin (Brazil). UNESCO-IHP Water Programme for Environmental Sustainability, Climate Change and Human Impacts on the Sustainability of Groundwater Resources: Quantity and Quality Issues, Mitigation and Adaptation Strategies in Brazil. Printed by UNESCO.
  24. [24]  Giampietro, M. and Mayumi, K. (2009), The Biofuel Delusion. The Fallacy of Large-Scale. Agro-biofuel Production. Ed. Earthscan. Sterling, USA.
  25. [25]  Ginzburg, R.G., Torrella, S.A. and Adámoli, J.M. (2012), Las cortinas forestales de bosque nativo son eficaces para mitigar los efectos de la expansión agrícola? Revista de la Asociación Argentina de Ecología de Paisajes 3, 34-42.
  26. [26]  Gough, C.M., Vogel, C.S., Schmid, H.P. and Curtis, P.S. (2008), Controls on Annual Forest Carbon Storage: Lessons from the Past and Predictions for the Future, Bioscience 58(7), 609-622.
  27. [27]  IPCC (Intergovernmental Panel on Climate Change) (2000), IPCC Special Report Emission Scenarios. Summary for Policymakers. A Special Report of IPCC Working Group III. Available in: https://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf.
  28. [28]  IPCC (Intergovernmental Panel on Climate Change) (2007), IPCC Fourth Assessment Report: Climate Change 2007. The Physical Science Basis. Cambridge (United Kingdom): Cambridge University Press. Available in: www.ipcc.ch/ipccreports/ar4-wg1.html.
  29. [29]  Jensen, A.A., Hoffman, L., Moller, B.T., Schmidt, A., Christiansen, K. and Elkingtom, J. (1997), Life cycle assessment: a guide to approaches, experiences and information sources. Environmental Issues Series, n 6. European Environment Agency. Available at http://www.eea.europa.eu/publications/GH-07-97-595-EN-C.
  30. [30]  Kyoto Protocol to the United Nations Framework Convention on Climate Change (1998), United Nations. http://unfccc.int/resource/docs/convkp/kpeng.pdf
  31. [31]  Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichstein, M., Papale, D., Piao, S.L., Schulze, E.D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beers, C., Bernhofer, C., Black, K.G., Bonal, D., Bonnefond, J.M., Chambers, J., Ciais, P., Cook, B., Davis, K.J., Dolman, A.J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grünwald, T., Guidolotti, G., Hanson, P.J., Harding, R., Hollinger, D.Y., Hutyra, L.R., Kolar, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila T., Law, B.E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J.W., Nikinmaa, E., Ollinger, S.V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M.J., Seufert, G., Sierra, C., Smith, M.L., Tang, J., Valentini, R., Vesala, T., Janssens, I.A. (2007), CO2 balance of boreal, temperate, and tropical forests derived from a global database, Global Change Biology 13, 2509-2537.
  32. [32]  Matteucci, S.D. (2012), Ecorregión Pampa. In: Morello J.H., Matteucci S.D., Rodríguez A. and Silva M., eds. Ecorregiones y Complejos Ecosistémicos Argentinos. Orientación Gráfica Editora SRL. Buenos Aires, Argentina. (in Spanish)
  33. [33]  Martin, J.F., Diemont, S.A.W., Powell, E., Stantonc, M. and Levy-Tacher, S. (2006), Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management. Agriculture, Ecosystems and Environment 115:128- 140.
  34. [34]  Moncada, M (2006), Flores y flujos de materiales, Revista Iberoamericana de Economía Ecológica, 4, 17-28. (in Spanish)
  35. [35]  Montenegro, C., Strada, M., Bono, J., Gasparri, I., Manghi, E., Parmuchi, E. and Brouver, M. (2005), Estimación de la pérdida de superficie de bosque nativo y tasa de deforestación en el norte de Argentina, Buenos Aires, UMSEF Unidad de Manejo del Sistema de Evaluación Forestal, Dirección Bosques, Secretaría de Ambiente y Desarrollo Sustentable. (in Spanish)
  36. [36]  Morello, J.H. (2012), Ecorregión Chaco Seco. In: Morello J.H., Matteucci S.D., Rodríguez A. and Silva M., eds. Ecorregiones y Complejos Ecosistémicos Argentinos. Orientación Gráfica Editora SRL. Buenos Aires, Argentina. (in Spanish)
  37. [37]  Morello, J.H., Pengue, W.A. and Rodríguez, A. (2007), Un siglo de cambios de diseño del paisaje: el Chaco Argentino. In: Matteucci S.D., ed. Panorama de la ecología de paisajes en Argentina y países sudamericanos. Ediciones INTA, Buenos Aires, Argentina. (in Spanish)
  38. [38]  Odum, H.T. (1986) EMERGY in Ecosystems. In Polunin N., ed. Ecosystem Theory and Application. Wiley, New York.
  39. [39]  Odum, H.T. (1988), Self-organization, transformity and information, Science 242,1132-1139.
  40. [40]  Odum, H.T. (1996), Environmental Accounting: EMERGY and Environmental Decision Making. John Wiley & Sons, New York.
  41. [41]  Odum, H.T. (2000), Folio #2: Emergy of global Processes. Handbook of Emergy Evaluation: A compendium of data for emergy computation issued in a series of folios. Center for Environmental Policy, University of Florida, Gainesville.
  42. [42]  Ottmann, G.S., Renzi, D.G., Miretti, A. and Spiaggi, E. (2013), Sustainability of Production Practices from an Agro-Ecological Perspective in Two Farms, Santa Fe Province, Argentina, Agroecology and Sustainable Food Systems 37(4), 430-443.
  43. [43]  Pardos, J.A. (2010), Los ecosistemas forestales y el secuestro de carbono ante el calentamiento global. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ministerio de Ciencia e Innovación. Madrid, Spain. (in Spanish)
  44. [44]  Parker, C., Mitchell, A., Trivedi, M., Mardas, N. and Sosis, K. (2009), The Little REDD+ Book. Global Canopy Programme, Oxford, Reino Unido.
  45. [45]  Pece, M.G., de Benítez, C., de Galíndez, and Acosta, M. (2006), Bosques y forestaciones como sumideros de carbono en el parque chaque?o. II Jornadas Forestales, Universidad Nacional de Santiago del Estero, Argentina. http://fcf.unse.edu.ar/eventos/2- jornadas-forestales/conferencias.htm
  46. [46]  Pengue, W.A. (2004). Producción agroexportadora e (in) seguridad alimentaria: El caso de la soja en Argentina. Revista Iberoamericana de Economía Ecológica 1, 46-55. (in Spanish)
  47. [47]  Pulselli, F.M., Coscieme, L. and Bastianoni, S. (2011), Ecosystem services as a counterpart of emergy flows to ecosystems. Ecological Modelling 222(16), 2924-2928.
  48. [48]  Rótolo, G.C., Montico, S., Francis, C.A. and Ulgiati, S. (2014), Performance and Environmental Sustainability of Cash Crop Production in Pampas Region, Argentina, Journal of Environmental Accounting and Management 2(3), 229-256.
  49. [49]  Ryan, M.G., Harmon, M.E., Birdsey, R.A., Giardina, C.P., Heath, L.S., Houghton, R.A., Jackson, R.B., McKinley, D.C., Morrison, J.F., Murray, B.C., Pataki, D.E. and Skog, K.E. (2010), A synthesis of the science on forests and carbon for U.S. forests. Ecological Society of America. Synthesis, Rep. No. 13.
  50. [50]  Schandl, H., Hatfield-Dodds, S., Wiedmann, T., Geschke, A., Cai, Y., West, J., Newth, D., Baynes, T., Lenzen, M. and Owen, A.(2016), Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions, Journal of Cleaner Production 132, 45-56.
  51. [51]  Sciubba, E. and Ulgiati, S. (2005), Emergy and exergy analyses: Complementary methods or irreducible ideological options? Energy 30,1953-1988.
  52. [52]  Solbrig, O. (1997), Ubicación histórica: desarrollo y problemas de la Pampa Húmeda. In: Morello J.H., Solbrig O., eds. Argentina granero del mundo: hasta cuándo? Orientación Gráfica Editora SRL, Buenos Aires, Argentina. (in Spnish)
  53. [53]  Toledo, A (1998), Economía de la Biodiversidad. Serie Textos Básicos para la Formación Ambiental. PNUMA, México D.F., México.(in Spanish)
  54. [54]  Torrella, S.A., Ginzburg, R.G., Adámoli, J.M. and Galetto, L. (2013), Changes in forest structure and tree recruitment in Argentinean Chaco: Effects of fragment size and landscape forest cover. Forest Ecology and Management 307, 147-154.
  55. [55]  Torrella, S.A. (2014), Fragmentación y pérdida del "bosque de tres quebrachos" y su comunidad de plantas leñosas en el SO de la Provincia de Chaco. PhD Thesis. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. (in Spanish)
  56. [56]  Totino, M. (2015), Utilización de indicadores biofísicos para el estudio de la sustentabilidad socioambiental en la planicie Chaco Pampeana. Universidad de Buenos Aires, Argentina. PhD Thesis available in: http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_5799_Totino.pdf (in Spanish)
  57. [57]  Totino, M (2016), Síntesis emergética como herramienta de comparación entre dos sistemas de producción agrícola argentinos: Chaco Seco y Pampa Ondulada. Revista Iberoamericana de Economía Ecológica 26, 123-139. (in Spanish)
  58. [58]  Ulgiati, S., Raugei, M. and Bargigli, S. (2006), Overcoming the inadequacy of single-criterion approaches to Life Cycle Assessment, Ecological Modelling 190, 432-442.
  59. [59]  Ulgiati, S., Ascione, M., Bargigli, S, Cherubini, F., Franzese, P.P., Raugei, M., Viglia, S., Zucaro, A. (2011), Material, energy and environmental performance of technological and social systems under a Life Cycle Assessment perspective, Ecological Modelling 222,176-189.
  60. [60]  Unidad de Manejo del Sistema de Evaluación Forestal (UMSEF) (2007), Monitoreo de Bosque Nativo. Período 1998-2002. Período 2002-2006 (Datos Preliminares). SAyDS, Argentina. (in Spanish)
  61. [61]  Unidad de Manejo del Sistema de Evaluación Forestal (UMSEF) (2012), Monitoreo de la Superficie de Bosque Nativo de la República Argentina. Período 2006-2011. Regiones Forestales Parque Chaqueño, Selva Misionera y Selva Tucumano-Boliviana. SAyDS, Argentina. (in Spanish)
  62. [62]  Van Tuyl, S., Law, B.E., Turner, D.P. and Gitelman, A.I. (2005), Variability in net primary production and carbon storage in biomass across Oregon forests. An assessment integrating data from forest inventories, intensive sites, and remote sensing, Forest Ecology and Management 209, 273-291.
  63. [63]  Zhang, Z., Qu, J. and Zeng, J. (2008), A quantitative comparison and analysis on the assessment indicators of greenhouse gases emission, Journal of Geographical Sciences 18, 387-399.