Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal

Email: aml@fe.up.pt

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email: jzzhang@mail.xjtu.edu.cn


Technical and Economical Assessment of Biomass Potential for Power Production: A Study in the South of Italy

Journal of Environmental Accounting and Management 4(3) (2016) 287--299 | DOI:10.5890/JEAM.2016.09.004

Antonio Messineo$^{1}$, Davide Bonasera$^{1}$, Roberto Volpe$^{1}$, Simona Messineo$^{2}$, Antonino Marvuglia$^{3}$

$^{1}$ Facoltà di Ingegneria e Architettura, Università degli Studi di Enna Kore, Cittadella Universitaria, Enna, 94100, Italy

$^{2}$ Siciliacque S.p.A., Via Gioacchino di Marzo, Palermo, 90144, Italy

$^{3}$ Luxembourg Institute of Science and Technology (LIST), ERIN - Environmental Research & Innovation Department, 5, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg

Download Full Text PDF

 

Abstract

The use of biomass, among the various forms of renewable energy, has assumed a key role in the current European Union agenda. In 2005 the European Commission launched a “biomass action plan” in order to promote the development of biomass energy from wood, waste and agricultural crops and stimulate economic activities in rural areas. Among the various types of biomass, agroforestry residues are the prevalent amount in the country and the most readily available. However their use, in the production of electricity or in a cogeneration form, has not taken off for small plants. The main problems are related to the local availability of the resource, to logistics problems, to the purchase price and to the reliability of conversion technologies. This paper aims to analyze the residual agroforestry biomass (herbaceous and woody) in the administrative province of the city of Enna (Italy) and to evaluate the financial viability of a small gasification plant (<1 MWe) with and without cogeneration. The support of a Geographic Information System (GIS) is used to identify the suitable areas for biomass exploitation and optimal localization of the conversion plants using a multi-criteria analysis based on different measures. The financial viability was evaluated for different scenarios based on investment costs, management costs and revenues from the selling of electricity for different plant sizes and number of yearly operational hours.

References

  1. [1]  André, F., Van Doorn, J., Curvers, T., Waldheim, L., Olsson, E., van Wijk, A. and Daey-Ouwens, C. (1997), Characteristics and availability of biomass waste and residues in the Netherlands for gasification, Biomass and Bioenergy 12, 225-240.
  2. [2]  Beccali, M., Galletto, J.M., Messineo, A. and Panno, D. (2009), Valorizzazione energetica delle biomasse: un caso studio mediante GIS. Ingegneria Ambientale 38(4),180-188.
  3. [3]  Buragohain, B., Mahanta, P., Vijayanand, S. and Moholkar. (2010), Biomass gasification for decentralized power generation: The Indian perspective, Renewable and Sustainable Energy Reviews 14(1), 73-92.
  4. [4]  Castelli, S. (2011), Biomasse ed Energia, produzione, gestione e processi di trasformazione, Maggioli Editore 465-515.
  5. [5]  Cosic, A., Stanic, Z. and Duic, N. (2011), Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: Case study Croatia, Energy 36, 2017-2028.
  6. [6]  Dornburg, V. and Faaij, A. (2001), Efficiency and economy of wood-fired biomass energy systems in relation to scale regarding heat and power generation using combustion and gasification technologies, Biomass and Bioenergy 21, 91-108.
  7. [7]  European Biomass Association - EBA. (2010), AEBIOM annual report 2010. Available at: http://www.aebiom.org.
  8. [8]  European Commision. (2014), State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in the EU, Brussels, 28.7.2014.
  9. [9]  Fowler, P., Kraja, G., Loncar, D. and Duic, N. (2009), Modeling the energy potential of biomass e H2RES, International Journal of Hydrogen Energy 34(16), 7027-7040.
  10. [10]  Freppaz, D., Minciardi, R., Robba, M., Rovatti, M., Sacile, R. and Taramasso, A. (2004), Optimizing forest biomass exploitation for energy supply at a regional level. Biomass and Bioenergy 26(1), 15-25.
  11. [11]  IPCC (2007), Climate Change 2007: Synthesis Report, published by the Intergovernmental Panel on Climate Change, 2008.
  12. [12]  ISTAT – Atti del 6 Censimento Generale dell’Agricoltura. (2014), Available at: http://www.istat.it/it/archivio/112514.
  13. [13]  Italian Ministry of Economic Development – IMED. (2012), Decreto Ministeriale 6 Luglio 2012, Incentivi per energia da fonti rinnovabili elettriche non fotovoltaiche. URL: http://www.sviluppoeconomico.gov.it/images/stories/normativa/DM-6-luglio-2012- Incentivi-per-energia-da-fonti-rinnovabili-elettriche-non-fotovoltaiche.pdf.
  14. [14]  Italian Ministry of Economic Development – IMED. (2009), Piano di azione nazionale per le energie rinnovabili dell’Italia. Available at: http://www.ebb-eu.org/legis/ActionPlanDirective2009_28/national_renewable_energy_action_plan_italy_it.pdf.
  15. [15]  Kramreiter, R., Url, M., Kotik, J. and Hofbauer, H. (2008), Experimental investigation of a 125kW twin-fire fixed bed gasification pilot plan and comparison to the results of a 2 MW combined heat and power plant (CHP), Fuel Processing Technology 89, 90- 102.
  16. [16]  Lettner, F., Timmerer, H. and Haselbacher, P. (2007), Guideline for safe and eco-friendly biomass gasification Intelligent Energy – Europe (IEE) – Deliverable n. 8. Biomass gasification – State of the art description. Available at: https://ec.europa.eu/energy/intelligent/projects/sites/ieeprojects/ files/projects/documents/gasification_guide_biomass_gasification_-_state_of_the_art_description.pdf.
  17. [17]  Marvuglia, A. and Messineo, A. (2012), Using recurrent artificial neural networks to forecast household electricity consumption. Energy Procedia 14, 45-55.
  18. [18]  Messineo, A., Volpe, R. and Marvuglia, A. (2012), Ligno-cellulosic biomass exploitation for power generation: A case study in Sicily, Energy 45(1), 613-625.
  19. [19]  Motola, V., Colonna, N., Alfano, V., Gaeta, M., Sasso, S., De Luca, V., De Angelis, C., Soda, A. and Braccio, G. (2009), Censimento potenziale energetico biomasse, metodo indagine, atlante Biomasse su WEB-GIS. MSE–Enea, Report RSE/2009/167. Available at: http://old.enea.it/attivita_ricerca/energia/sistema_elettrico/Censimento_biomasse/RSE167.pdf.
  20. [20]  Monforti, F., Lugato, E., Motola, V., Bodis, K., Scarlat, N. and Dallemand, J.F. (2015), Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe, Renewable and Sustainable Energy Reviews 44, 519-529.
  21. [21]  Obernberger, I. and Thek, G. (2008), Combustion and gassification of solid biomass for heat and power production in Europe-art and relevant future developments. Proc. of the 8th European Conference on Industrial Furnaces and Boilers, Vilamoura, Portugal, April 2008, Cenertec (Ed.), Portugal.
  22. [22]  Palchetti, E., Chiaramonti, D. and Sinatora, A. (2009), Rilievo Indici di relazione tra produzioni agricole e biomassa residuale associata Analisi del mercato della biomassa residuale nelle provincie delle regioni Molise, Campania, Puglia, Basilicata, Calabria, Sicilia, Sardegna. MSE–Enea, Report RSE/2009/52.
  23. [23]  Rentizelas, A., Karellas, S., Kakaras, E. and Tatsiopoulos, I. (2009), Comparative techno-economic analysis of ORC and gasification for bioenergy applications. Energy Conversion and Management 50(3), 674-681.
  24. [24]  Ridjan, I., Mathiesen, B.V. and Connolly, D. (2013), A review of biomass gasification technologies in Denmark and Sweden. Department of Development and Planning, Aalborg University, November 2013.
  25. [25]  Saaty, T.L. (2003), Decision-making with the AHP: Why is the principal eigenvector necessary. European Journal of Operational Research 145, 85-91.
  26. [26]  Vivoli, F.P. (2008), Energia dalle biomasse – Tecnologie e prospettive. ENEA: Lungotevere Thaon di Revel 76, Roma, 2008, pp. 13- 23.
  27. [27]  Voivontas, D., Assimacopoulos, D. and Koukios, E.G. (2001), Assessment of biomass potential for power production: a GIS based method, Biomass and Bioenergy 20(2), 101-112.
  28. [28]  Volpe, R., Messineo, A. and Millan, M. (2016), Carbon reactivity in biomass thermal breakdown, Fuel 183, 139-144.
  29. [29]  Volpe, R., Messineo, A. and Millan, M., Volpe, M., Kandiyoti, R. (2015), Assessment of olive wastes as energy source: Pyrolysis, torrefaction and the key role of H loss in thermal breakdown, Energy 82, 119-127.
  30. [30]  Volpe, M., Volpe, R., Panno, D. and Messineo, A. (2015), Upgrade of citrus waste as a biofuel via slow pyrolysis, Journal of Analytical and Applied Pyrolysis 115, 66-76.
  31. [31]  Yagi, K. and Nakata T. (2011), Economic analysis on small-scale forest biomass gasification considering geographical resources distribution and technical characteristics, Biomass and bioenergy 35, 2883-2892.