Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Dynamic Analysis of Nonlinear Stochastic DENGUE Epidemic Model

Journal of Applied Nonlinear Dynamics 14(3) (2025) 745--755 | DOI:10.5890/JAND.2025.09.015

Santosh Kumar Sharma$^1$, Sourav Rana$^2$, Amar Nath Chatterjee$^1$

$^1$ Department of Mathematics, K.L.S. College, Magadh University, Bodh Gaya, India

$^2$ Department of Statistics, Visva-Bharati University, Santiniketan, India

Download Full Text PDF

 

Abstract

Dengue infection primarily occurs in tropical and subtropical regions. Climate change exacerbates the transmission of dengue fever. Therefore, stochastic modeling is significantly more efficient than a deterministic model. In this context, we work with deterministic and stochastic differential equation models. We have calculated the basic reproduction number ($R_0$) at the point when the disease-free equilibrium state is stable. The progression of the infection is contingent upon the value of $R_0$, and the disease can be effectively managed when $R_0$ is less than 1. Furthermore, the presence of the disease becomes apparent when the basic reproduction number ($R_0$) exceeds 1. This study enhances our comprehension of the transfer of infection between human hosts and mosquito vectors. In order to analyze the stochastic model, we employ the Euler-Maruyama and stochastic Runge-Kutta techniques. Additionally, we present the stochastic nonstandard finite difference scheme (SNSFD), which maintains the model's fundamental features, such as positivity, boundedness, and dynamic consistency, regardless of the chosen step size. The numerical results obtained from our stochastic model provide support for the validity of the stochastic differential equation model and its analytical findings.

References

  1. [1]  World Health Organization (2009), Dengue: Guidelines for diagnosis, treatment, prevention and control, World Health Organization.
  2. [2]  Carvalho, S.A., Silva, S.O., and Charret, I.C. (2019), Mathematical modeling of dengue epidemic: Control methods and vaccination strategies, Theory in Biosciences, 138, 223-239.
  3. [3]  Guzman, M.G. and Harris, E. (2015), Dengue, The Lancet, 385(9966), 453-465.
  4. [4]  Lindbäck, H., Lindbäck, J., Tegnell, A., Janzon, R., Vene, S., and Ekdahl, K. (2003), Dengue fever in travelers to the tropics, 1998 and 1999, Emerging Infectious Diseases, 9(4), 438.
  5. [5]  Gubler, D.J. (1998), Dengue and dengue hemorrhagic fever, Clinical Microbiology Reviews, 11(3), 480-496.
  6. [6]  Carbajo, A.E., Curto, S.I., and Schweigmann, N.J. (2006), Spatial distribution pattern of oviposition in the mosquito Aedes aegypti in relation to urbanization in Buenos Aires: Southern fringe bionomics of an introduced vector, Medical and Veterinary Entomology, 20(2), 209-218.
  7. [7]  Bisset Lazcano, J.A., Marquetti, M.C., Portillo, R., Rodríguez, M.M., Suárez, S., and Leyva, M. (2006), Factores ecológicos asociados con la presencia de larvas de Aedes aegypti en zonas de alta infestación del municipio Playa, Ciudad de La Habana, Cuba, Revista Panamericana de Salud Pública, 19, 379-384.
  8. [8]  Luz, P.M., Codeço, C.T., Massad, E., and Struchiner, C.J. (2003), Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil, Memórias do Instituto Oswaldo Cruz, 98, 871-878.
  9. [9]  Chamberlain, R.W. and Sudia, W.D. (1961), Mechanism of transmission of viruses by mosquitoes, Annual Review of Entomology, 6(1), 371-390.
  10. [10]  Taghikhani, R. and Gumel, A.B. (2018), Mathematics of dengue transmission dynamics: Roles of vector vertical transmission and temperature fluctuations, Infectious Disease Modelling, 3, 266-292.
  11. [11]  Agusto, F.B., Cook, J., Shelton, P.D., and Wickers, M.G. (2015), Mathematical model of MDR-TB and XDR-TB with isolation and lost to follow-up, Abstract and Applied Analysis, 2015(1), p. 828461, Hindawi Publishing Corporation.
  12. [12]  Feng, Z. and Velasco-Hernández, J.X. (1997), Competitive exclusion in a vector-host model for the dengue fever, Journal of Mathematical Biology, 35, 523-544.
  13. [13]  Garba, S.M., Gumel, A.B., and Bakar, M.R.A. (2008), Backward bifurcations in dengue transmission dynamics, Mathematical Biosciences, 215(1), 11-25.
  14. [14]  Heffernan, J.M., Smith, R.J., and Wahl, L.M. (2005), Perspectives on the basic reproductive ratio, Journal of the Royal Society Interface, 2(4), 281-293.
  15. [15]  Van den Driessche, P. and Watmough, J. (2002), Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180(1-2), 29-48.
  16. [16]  Sonderup, M.W., Afihene, M., Ally, R., Apica, B., Awuku, Y., Cunha, L., Dusheiko, G., Gogela, N., Lohouès-Kouacou, M.J., Lam, P., and Lesi, O. (2017), Hepatitis C in sub-Saharan Africa: The current status and recommendations for achieving elimination by 2030, The Lancet Gastroenterology $\&$ Hepatology, 2(12), 910-919.
  17. [17]  Hussain, G., Khan, T., Khan, A., Inc, M., Zaman, G., Nisar, K.S., and Akgül, A. (2021), Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model, Alexandria Engineering Journal, 60(4), 4121-4130.