Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Regular and Chaotic Phase Space Fraction in the Double Pendulum

Journal of Applied Nonlinear Dynamics 14(3) (2025) 645--655 | DOI:10.5890/JAND.2025.09.010

Santiago Cabrera$^1$, Edson D. Leonel$^2$, Arturo C. Marti$^1$

$^1$ Instituto de Física, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay

$^2$ Departamento de Física - Universidade Estadual Paulista - Unesp, Av.24A, 1515, Bela Vista, CEP, 13506-700 Rio Claro, SP, Brazil

Download Full Text PDF

 

Abstract

The double coplanar pendulum is an example of the coexistence of regular and chaotic dynamics for equal energy values but different initial conditions. Regular trajectories predominate for low energies; as the energy is increased, the system passes through values where chaotic trajectories are abundant, and then, increasing the energy further, it is again dominated by regular trajectories. Given that the energetically accessible states are bounded, a relevant question is about the fraction of phase space regular or chaotic trajectories as the energy varies. In this paper, we calculate the relative abundance of chaotic trajectories in phase space, characterizing the trajectories using the maximum Lyapunov exponent, and find that, for low energies, it grows exponentially.

References

  1. [1]  Arnold, V.I. (2013), Mathematical Methods of Classical Mechanics, 60, Springer Science \& Business Media.
  2. [2]  Lichtenberg, A.J. and Lieberman, M.A. (2013), Regular and Stochastic Motion, 38, Springer Science \& Business Media.
  3. [3]  Zaslavsky, G. (2002), Dynamical traps, Physica D: Nonlinear Phenomena, 168, 292-304.
  4. [4]  Ishizaki, R., Horita, T., and Mori, H. (1993), Anomalous diffusion and mixing of chaotic orbits in hamiltonian dynamical systems, Progress of Theoretical Physics, 89(5), 947-963.
  5. [5]  Herbert, G., Charles, P., and John, S. (2000), Classical Mechanics, Addison-Wesley, New York, NY.
  6. [6]  Luo, A.C. and Guo, C. (2019), A period-1 motion to chaos in a periodically forced, damped, double-pendulum, Journal of Vibration Testing and System Dynamics, 3(3), 259-280.
  7. [7]  D'Alessio, S. (2022), An analytical, numerical and experimental study of the double pendulum, European Journal of Physics, 44(1), 015002. DOI:10.1088/1361-6404/ac986b.
  8. [8]  Laouina, Z., Ouchaouka, L., Moussetad, M., Mordane, S., and Radid, M. (2022), Experimental study of the double pendulum in shared e-lab architecture, Procedia Computer Science, 210, 317-322.
  9. [9]  Bazargan-Lari, Y., Eghtesad, M., Khoogar, A., and Mohammad-Zadeh, A. (2014), Dynamics and regulation of locomotion of a human swing leg as a double-pendulum considering self-impact joint constraint, Journal of Biomedical Physics $\&$ Engineering, 4(3), 91.
  10. [10]  Muzzio, J.C., Carpintero, D.D., and Wachlin, F.C. (2005), Spatial structure of regular and chaotic orbits in a self-consistent triaxial stellar system, Celestial Mechanics and Dynamical Astronomy, 91, 173-190.
  11. [11]  Manos, T. and Athanassoula, E. (2011), Regular and chaotic orbits in barred galaxies--I. applying the sali/gali method to explore their distribution in several models, Monthly Notices of the Royal Astronomical Society, 415(1), 629-642.
  12. [12]  Shinbrot, T., Grebogi, C., Wisdom, J., and Yorke, J.A. (1992), Chaos in a double pendulum, American Journal of Physics, 60(6), 491-499.
  13. [13]  Stachowiak, T. and Okada, T. (2006), A numerical analysis of chaos in the double pendulum, Chaos, Solitons $\&$ Fractals, 29(2), 417-422.
  14. [14]  Calvão, A.M. and Penna, T.J.P. (2015), The double pendulum: a numerical study, European Journal of Physics, 36(4), 045018. DOI:10.1088/0143-0807/36/4/045018.
  15. [15]  MATLAB Help Center, ode45. https://la.mathworks.com/help/matlab/ref/ode45.html?lang=en (Accessed on 12/11/2023).
  16. [16]  Korsch, H.J., Hartmann, T., and Jodl, H.J. (2008), Chaos: a program collection for the PC, Springer-Verlag Berlin Heidelberg, New York, NY. DOI:10.1007/978-3-540-74867-0.
  17. [17]  Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. (1985), Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 16(3), 285-317.
  18. [18]  Krishnaswami, G.S. and Senapati, H. (2019), Classical three rotor problem: Periodic solutions, stability and chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12), 123121. DOI:10.1063/1.5110032.
  19. [19]  Rafat, M., Wheatland, M., and Bedding, T. (2009), Dynamics of a double pendulum with distributed mass, American Journal of Physics, 77(3), 216-223.