Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Fractal Modelling of Dynamical Systems in Association with Weyl-Marchaud Fractional Derivative

Journal of Applied Nonlinear Dynamics 14(2) (2025) 435--461 | DOI:10.5890/JAND.2025.06.013

T.M.C. Priyanka$^1$, A. Gowrisankar$^1$, Bilel Selmi$^2$, Pankajam Natarajan$^3$

$^1$ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India

$^2$ Analysis, Probability & Fractals Laboratory LR18ES17, Department of Mathematics, Faculty of Science of Monastir, University of Monastir, 5000-Monastir, Tunisia

$^3$ Department of Mathematics, School of Engineering and Technology, CMR University, Chagalahatti, Bangalore, 562149, Karnataka, India

Download Full Text PDF

 

Abstract

The scaling parameters distinguish the fractal interpolation functions from the classical interpolation techniques. While generating hidden variable $A$-fractal function as an attractor for a specific iterated function system, the scaling parameters are considered in the form of upper triangular matrix. As the scalings can be chosen either as constants or functions, in this paper, for both the choices, the Weyl-Marchaud fractional derivative of $A$-fractal function is investigated. The essential conditions are enforced on the upper triangular matrix to demonstrate that the fractional derivative of $A$-fractal function is an attractor for a new iterated function system. To visualize the applications of fractal interpolation functions in the reconstruction process, the Lorenz and R{\"o}ssler attractors of chaotic dynamical systems are reconstructed. Further, the generated fractal attractors consist of more number of data rather than the original chaotic attractors and thus, greatly aids to reveal their hidden self-similar nature.

References

  1. [1]  Barnsley, M.F. (1986), Fractal functions and interpolation, Constructive Approximation, 2(01), 303-329.
  2. [2]  Banerjee, S., Easwaramoorthy, D., and Gowrisankar, A. (2021), Fractal Functions, Dimensions and Signal Analysis, Springer, Cham.
  3. [3]  Attia, N. and Selmi, B. (2019), Relative multifractal box-dimensions, Filomat, 33(09), 2841-2859.
  4. [4]  Wang, H.-Y. and Yu, J. (2013), Fractal interpolation functions with variable parameters and their analytical properties, Journal of Approximation Theory, 175, 1-18.
  5. [5]  Serpa, C. and Buescu, J. (2015), Explicitly defined fractal interpolation functions with variable parameters, Chaos Solitons Fractals, 75, 76-83.
  6. [6]  Navascu{e}s, M.A. (2005), Fractal polynomial interpolation, Zeitschrift für Analysis und ihre Anwendungen 25(02), 401-418.
  7. [7]  Navascu{e}s, M.A. (2007), Non-smooth polynomials, International Journal of Mathematical Analysis, 1(04), 159-174.
  8. [8]  Katiyar, S.K., Chand, A.K.B., and Navascu{e}s, M.A. (2016), Hidden variable $A$-fractal functions and their monotonicity aspects, Revista de la Academia de Ciencias Exactas, Fisicas Quimicas y Naturales de Zaragoza, 71, 7-30.
  9. [9]  Peng, W.L., Yao, K., Zhang, X., and Yao, J. (2019), Box dimension of Weyl-Marchaud fractional derivative of linear fractal interpolation functions, Fractals 27(04), 1950058.
  10. [10]  Ferrari, F. (2018), Weyl and Marchaud derivatives: a forgotten history, Mathematics, 6(01), 6.
  11. [11]  Liang, Y.-S. and Zhang, Q. (2016), A type of fractal interpolation functions and their fractional calculus, Fractals, 24(02), 1650026.
  12. [12]  Priyanka, T.M.C. and Gowrisankar, A. (2021), Analysis on Weyl-Marchaud fractional derivative for types of fractal interpolation function with fractal Dimension, Fractals, 29(07), 2150215.
  13. [13]  Priyanka, T.M.C. and Gowrisankar, A. (2021), Riemann-Liouville fractional integral of non-affine fractal interpolation function and its fractional operator, The European Physical Journal Special Topics, 230, 3789-3805.
  14. [14]  Gowrisankar, A. and Uthayakumar, R. (2016), Fractional calculus on fractal interpolation function for a sequence of data with countable iterated function system, Mediterranean Journal of Mathematics, 13(06), 3887-3906.
  15. [15]  Ruan, H.J., Su, W.Y., and Yao, K. (2009), Box dimension and fractional integral of linear fractal interpolation functions, Journal of Approximation Theory, 161(01), 187-197.
  16. [16]  Gowrisankar, A. and Prasad, M.G.P. (2019), Riemann-Liouville calculus on quadratic fractal interpolation function with variable scaling factors, The Journal of Analysis, 27(02), 347-363.
  17. [17]  Priyanka, T.M.C., Agathiyan, A., and Gowrisankar, A. (2022) Weyl–Marchaud fractional derivative of a vector valued fractal interpolation function with function contractivity factors, The Journal of Analysis, 1-33.
  18. [18]  Valarmathi, R. and Gowrisankar, A. (2023), On the variable order fractional calculus of fractal interpolation functions, Fractional Calculus and Applied Analysis, 26, 1273-1293.
  19. [19]  Prasad, P.K., Gowrisankar, A., Banerjee, S., and Saha, A. (2023), Fractal representation of electron-acoustic waves in the Earth's auroral zone, Advances in Space Research, 71(12), 5135-5146.
  20. [20]  Fataf, N.A.A., Gowrisankar, A., and Banerjee, S. (2020), In search of self-similar chaotic attractors based on fractal function with variable scaling approximately, Physica Scripta, 95(07), 075206.
  21. [21]  Prasad, P.K., Gowrisankar, A., Saha, A., and Banerjee, S. (2020), Dynamical properties and fractal patterns of nonlinear waves in solar wind plasma, Physica Scripta, 95(06), 065603.
  22. [22]  Mohanrasu, S.S., Udhayakumar, K., Priyanka, T.M.C., Gowrisankar, A., Banerjee, S., and Rakkiyappan, R. (2023), Event-triggered impulsive controller design for synchronization of delayed chaotic neural networks and its fractal reconstruction: an application to image encryption, Applied Mathematical Modelling, 115, 490-512.
  23. [23]  Barnsley, M.F., Elton, J., Hardin, D., and Massopust, P.R. (1989), Hidden variable fractal interpolation functions, SIAM Journal on Mathematical Analysis, 20(05), 1218-1242.
  24. [24]  Bouboulis, P. and Dalla, L. (2005), Hidden variable vector valued fractal interpolation functions, Fractals, 13(03), 227-232.
  25. [25]  Moniri, Z., Moghaddam, B.P., and Roudbaraki, M.Z. (2023), An efficient and robust numerical solver for impulsive control of fractional chaotic systems, Journal of Function Spaces, 2023, 9077924.
  26. [26]  Moghaddam, B.P., Dabiri, A., Mostaghim, Z.S., and Moniri, Z. (2023), Numerical solution of fractional dynamical systems with impulsive effects, International Journal of Modern Physics C, 34(01), 2350013.
  27. [27]  Lorenz, E.N. (1963), Deterministic non-periodic flows, Journal of Atmospheric Sciences, 20, 130-41.
  28. [28]  Maris, T.D. and Goussis, D.A. (2015), The hidden dynamics of the R{\"o}ssler attractor, Physica D: Nonlinear Phenomena, 295, 66-90.
  29. [29]  Mokhtary, P., Moghaddam, B.P., Lopes, A.M., and Machado, J.A.T. (2020), A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay, Numerical Algorithms, 83, 987-1006.
  30. [30]  Moghaddam, B.P., Mostaghim, Z.S., Pantelous, A.A., and Machado, J.A.T. (2021), An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay, Communications in Nonlinear Science and Numerical Simulation, 92, 105475.