Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


$S$-Asymptotically Bloch Type Periodic Solutions for Abstract Fractional Equations Involving $psi $-Hilfer Derivatives

Journal of Applied Nonlinear Dynamics 14(2) (2025) 343--354 | DOI:10.5890/JAND.2025.06.008

Naceur Chegloufa$^{1}$, Belkacem Chaouchi$^{2}$, Fatiha Boutaous$^{1}$, Marko Kosti\'c$^{3}$

$^{1}$ Lab. LAMDA-RO, Department of Mathematics, Faculty of Sciences, Saad Dahlab University, Blida, Algeria

$^{2}$ National higher School of Cybersecurity -Mahelma 16093, Sidi Abdellah, Algeria

$^{3}$ Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovi' ca 6, 21125 Novi Sad, Serbia

Download Full Text PDF

 

Abstract

The aim of this work is to investigate the existence and uniqueness of $S$-asymptotically Bloch type periodic solutions for a class of the neutral $\psi $-Hilfer fractional derivative equations with infinite delay. Our approach is based on the semigroup theory. In the end, we present an example to illustrate the applications of the abstract results.

References

  1. [1]  Badawi, H., Shawagfeh, N., and Abu Arqub, O. (2022), Fractional conformable stochastic integrodifferential equations: existence, uniqueness, and numerical simulations utilizing the shifted Legendre spectral collocation algorithm, Mathematical Problems in Engineering, 2022, Article ID 5104350.
  2. [2]  Chang, Y.K. and Wei, Y. (2021), S-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces, Acta Mathematica Scientia, 41(2), 413-425.
  3. [3]  Chang, Y.K. and Zhao, J. (2023), Pseudo S-asymptotically $(\omega ,c)$-periodic solutions to some evolution equations in Banach spaces, Banach Journal of Mathematical Analysis, 17(2), 34.
  4. [4]  Chegloufa, N., Chaouchi, B., Kosti{c}, M., and Du, W.S. (2023), On the study of pseudo $ S $-asymptotically periodic mild solutions for a class of neutral fractional delayed evolution equations, Axioms, 12(8), 800.
  5. [5]  Henr{\i}quez, H.R., Pierri, M., and T{a}boas, P. (2008), On S-asymptotically $ \omega $-periodic functions on Banach spaces and applications. Journal of Mathematical Analysis and Applications, 343(2), 1119-1130.
  6. [6]  Lunardi, A. (2012), Analytic semigroups and optimal regularity in parabolic problems, Springer Science and Business Media.
  7. [7] Norouzi, F. and N'Gu{e}r{e}kata, G.M. (2021), Existence results to a $\psi $-Hilfer neutral fractional evolution equation with infinite delay, Nonautonomous Dynamical Systems, 8(1), 101-124.
  8. [8]  Sousa, J.V.D.C. and De Oliveira, E.C. (2018), On the $\psi $-Hilfer fractional derivative, Communications in Nonlinear Science and Numerical Simulation, 60, 72-91.
  9. [9]  Wei, M. and Li, Q. (2022), Existence and uniqueness of $ S $-asymptotically periodic $ \alpha $-mild solutions for neutral fractional delayed evolution equation, Applied Mathematics-A Journal of Chinese Universities, 37(2), 228-245.