Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


A Note on a Camassa-Holm Type Equation

Journal of Applied Nonlinear Dynamics 14(2) (2025) 299--311 | DOI:10.5890/JAND.2025.06.006

Giuseppe Maria Coclite, Lorenzo di Ruvo

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, via E. Orabona 4, 70125 Bari, Italy

Dipartimento di Matematica, Universit`a di Bari, via E. Orabona 4, 70125 Bari, Italy

Download Full Text PDF

 

Abstract

Camassa-Holm equation arises as model for unidirectional propagation of shallow water waves over a flat bottom. In this paper, we prove the well-posedness of the classical solution for the Cauchy problem associated with this equation, for every choice of the time $T$.

References

  1. [1]  Fokas, A.S. and Liu, Q.M. (1996), Asymptotic integrability of water waves, Physical Review Letters, 77(12), 2347-2351.
  2. [2]  Fuchssteiner, B. and Fokas, A.S. (1981), Symplectic structures, their B{\"a}cklund transformations and hereditary symmetries, Physica D, 4, 47-66.
  3. [3]  Fokas, A.S. (1995), On a class of physically important integrable equations, Physica D, 87, 145-150.
  4. [4]  Fokas, A.S., Olver, P.J., and Rosenau, P. (1997), A plethora of integrable bi-Hamiltonian equations, Algebraic aspects of integrable systems: in memory of Irene Dorfman, 93-101, Boston, MA: Birkh{\"a}user.
  5. [5]  Fuchssteiner, B. (1996), Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation, Physica D, 95, 229-243.
  6. [6]  Camassa, R. and Holm, D.D. (1993), An integrable shallow water equation with peaked solitons, Physical Review Letters, 71, 1661-1664.
  7. [7]  Constantin, A. and Lannes, D. (2009), The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Archive for Rational Mechanics and Analysis, 192, 165-186.
  8. [8]  Ionescu-Kruse, D. (2007), Variational derivation of the Camassa-Holm shallow water equation, Journal of Nonlinear Mathematical Physics, 14(3), 311-320.
  9. [9]  Johnson, R.S. (2002), Camassa-Holm, Korteweg-de Vries and related models for water waves, Journal of Fluid Mechanics, 455, 63-82.
  10. [10]  Dai, H.H. (1998), Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods. Wave Motion, 28, 367-381.
  11. [11]  Dai, H.H. (1998), Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mechanica, 127, 193-207.
  12. [12]  Dai, H.H. and Huo, Y. (2000), Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456, 331-363.
  13. [13]  Misio{\l}ek, G. (1998), A shallow water equation as a geodesic flow on the Bott-Virasoro group, Journal of Geometry and Physics, 24(3), 203-208.
  14. [14]  Arnol'd, V.I. (1966), Sur la g{e}om{e}trie diff{e}rentielle des groupes de Lie de dimension infinite et ses applications {\`a} l'hydrodynamique des fluides parfaits, In Annales de l'institut Fourier, 16(1), 319-361.
  15. [15]  Constantin, A. and Kolev, B. (2002), On the geometric approach to the motion of inertial mechanical systems, Journal of Physics A: Mathematical and General, 35, 51-79.
  16. [16]  Constantin, A. and Kolev, B. (2003), Geodesic flow on the diffeomorphism group of the circle, Commentarii Mathematici Helvetici, 78, 787-804.
  17. [17]  Constantin, A. and Escher, J. (1998), Global existence and blow-up for a shallow water equation, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 26(2), 303-328.
  18. [18]  Himonas, A.A. and Misio{\l}ek, G. (2001), The Cauchy problem for an integrable shallow-water equation, Differential and Integral Equations, 14, 821-831.
  19. [19]  Li, Y.A. and Olver, P.J. (2000), Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, Journal of Differential Equations, 162(1), 27-63.
  20. [20]  Rodr{{\i}}guez-Blanco, G. (2001), On the Cauchy problem for the Camassa-Holm equation, Nonlinear Analysis: Theory, Methods $\&$ Applications, 46(3), 309-327.
  21. [21]  Constantin, A. (2000), Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Annales de l'institut Fourier, 50(2), 321-362.
  22. [22]  Constantin, A. and Molinet, L. (2000), Global weak solutions for a shallow water equation, Communications in Mathematical Physics, 211, 45-61.
  23. [23]  Bressan, A. and Constantin, A. (2007), Global conservative solutions of the Camassa-Holm equation, Rational Mechanics and Analysis, 183, 215-239.
  24. [24]  Bressan, A. and Constantin, A. (2007), Global dissipative solutions of the Camassa-Holm equation, Analysis and Applications, 5, 1-27.
  25. [25]  Coclite, G.M., Holden, H., and Karlsen, K.H. (2005), Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM Journal on Mathematical Analysis, 37(4), 1044-1069.
  26. [26]  Coclite, G.M., Holden, H., and Karlsen, K.H. (2009), Well-posedness of higher-order Camassa-Holm equations, Journal of Differential Equations, 246(3), 929-963.
  27. [27]  Coclite, G.M. and Karlsen, K.H. (2015), A note on the Camassa-Holm equation, Journal of Differential Equations, 259, 2158-2166.
  28. [28]  Constantin, A. and Molinet, L. (2000), Global weak solutions for a shallow water equation, Communications in Mathematical Physics, 211, 45-61.
  29. [29]  Holden, H. and Raynaud, X. (2007), Global conservative solutions of the generalized hyperelastic-rod wave equation, Journal of Differential Equations, 233(2), 448-484.
  30. [30]  Holden, H. and Raynaud, X. (2007), Global conservative solutions of the Camassa-Holm equation - a Lagrangian point of view, Communications in Partial Differential Equations, 32(10), 1511-1549.
  31. [31]  Holden, H. and Raynaud, X. (2009), Dissipative solutions for the Camassa-Holm equation, Discrete and Continuous Dynamical Systems, 24(4), 1047-1112.
  32. [32]  Johnson, R.S. (2003), On solutions of the camassa-holm equation, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459, 1687-1708.
  33. [33]  Xin, Z. and Zhang, P. (2000), On the weak solutions to a shallow water equation, Communications on Pure and Applied Mathematics, 53(11), 1411-1433.
  34. [34]  Xin, Z. and Zhang, P. (2002), On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Communications in Partial Differential Equations, 27, 1815-1844.
  35. [35]  Coclite, G.M., Karlsen, K.H., and Risebro, N.H. (2008), A convergent finite difference scheme for the Camassa-Holm equation with general $H^1$, initial data, Journal on Numerical Analysis, 46, 1554-1579.
  36. [36]  Coclite, G.M., Karlsen, K.H., and Risebro, N.H. (2008), An explicit finite difference scheme for the Camassa-Holm equation, Advances in Difference Equations, 13, 681-732.
  37. [37]  Lenells, J. (2005), Traveling wave solutions of the Camassa-Holm equation, Journal of Differential Equations, 217(2), 393-430.
  38. [38]  Constantin, A. (1997), On the Cauchy problem for the periodic Camassa-Holm equation, Journal of Differential Equations, 141, 218-235.
  39. [39]  Misiolek, G. (2002), Classical solutions of the periodic camassa-holm equation, Geometric and Functional Analysis, 12, 1080-1104.
  40. [40]  Coclite, G.M. and di Ruvo, L. (2016), A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law, Discrete and Continuous Dynamical Systems, 36(6), 2981-2990.
  41. [41]  Coclite, G.M. and di Ruvo, L. (2017), A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law, Discrete and Continuous Dynamical Systems, 37, 1247-1282.
  42. [42]  Coclite, G.M. and di Ruvo, L. (2019), A note on the convergence of the solution of the Novikov equation, Discrete $\&$ Continuous Dynamical Systems-Series B, 24, 2865-2899.
  43. [43]  Coclite, G.M. and Karlsen, K.H. (2006), A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Communications in Partial Differential Equations, 31(8), 1253-1272.
  44. [44]  Coclite, G.M. and diRuvo, L. (2014), Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one, Journal of Differential Equations, 256, 3245-3277.
  45. [45]  Coclite, G.M. and di Ruvo, L. (2015), Dispersive and diffusive limits for Ostrovsky-Hunter type equations, NoDEA, Nonlinear Differential Equations and Applications, 22, 1733-1763.
  46. [46]  LeFloch, P.G. and Natalini, R. (1999), Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Analysis: Theory, Methods $\&$ Applications, 36(2), 213-230.
  47. [47]  Schonbek, M.E. (1982), Convergence of solutions to nonlinear dispersive equations, Communications in Partial Differential Equations, 7(8), 959-1000.
  48. [48]  Hwang, S. (2007), Singular limit problem of the Camassa-Holm type equation, Journal of Differential Equations, 235(1), 74-84.
  49. [49]  Hwang, S. and Tzavaras, A.E. (2002), Kinetic decomposition of approximate solutions to conservation laws: Application to relaxation and diffusion-dispersion approximations, Communications in Partial Differential Equations, 27, 1229-1254.
  50. [50]  Coclite, G.M. and di Ruvo, L. (2023), On ${H}^2$-solutions for a camassa-holm type equation, Open Mathematics, 21, 1-21.
  51. [51]  Coclite, G.M., Holden, H., and Karlsen, K.H. (2005), Wellposedness for a parabolic-elliptic system, Discrete and Continuous Dynamical Systems, 13(3), 659-682.