Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Contribution of Higher-Order Nonlinearity on Dust Acoustic Solitary Waves in Complex Plasma with a High-Energy Tail Ion Distribution

Journal of Applied Nonlinear Dynamics 14(1) (2025) 141--151 | DOI:10.5890/JAND.2025.03.009

Smain Younsi$^{1}$, Moufida Benzekka$^{2}$, Nabil Arab$^{1}$, Rabia Amour$^{1}$

$^1$ Plasma Physics Group, Theoretical Physics Laboratory,Faculty of Physics, University of Bab-Ezzouar,USTHB, B.P. 32, El Alia, Algiers 16111, Algeria

$^2$ Laboratoire de Physique des Particules et Physique statistique, ENS, Vieux-Kouba, Algiers, Algeria

Download Full Text PDF

 

Abstract

The problem of dust acoustic dressed solitons is addressed in an unmagnetized collisionless dusty plasma with ions satisfying a $\kappa$-distribution. The approach based on the expanding of the Sagdeev potential up to the fourth-order has been generalized to the non-Maxwellian dusty plasma. This approach yields a second order inhomogeneous differential equation termed dressed soliton. The resulting dressed soliton is then expressed as a sum of the usual K-dV solution and the higher-order nonlinearity terms. The range of main parameters ($\kappa$ and $\lambda$) where the higher order correction is valid is explored. In particular, the suprathermal parameter values required to the valid dressed solitons are shifted toward higher values as the velocity $\lambda$ increases. Furthermore, our numerical investigations reveal that the main quantities of all localized structures are significantly modified by the suprathermal effects. Our results should help in providing a good fit between theoretical and experimental results.

References

  1. [1]  Goertz, C.K. (1989), Dusty plasmas in the solar system, Reviews of Geophysics, 27(2), 271-292.
  2. [2]  Mendis, D.A. and Rosenberg, M. (1994), Cosmic dusty plasmas, Annual Review of Astronomy and Astrophysics, 32, 419-463.
  3. [3]  Horanyi, M. (1996), Charged dust dynamique in the solar system, Annual Review of Astronomy and Astrophysics, 34, 383-418.
  4. [4]  Verheest, F. (2000), Waves in Dusty Space Plasmas, Kluwer, Dordrecht.
  5. [5]  Shukla, P.K. and Mamun, A.A. (2002), Introduction to Dusty Plasma, Physics, Institute of Physics, Bristol.
  6. [6]  Mamun, A.A. and Cairns, R. (2009), Dust-acoustic shock waves due to strong correlation among arbitrarily charged dust, Physical Review E, 79(5), 055401-055404.
  7. [7]  Mamun, A.A. and Shukla, P.K. (2009), Effects of nonthermal distribution of electrons and polarity of net dust-charge number density on nonplanar dust-ion-acoustic solitary waves, Physical Review E, 80(3), 037401-037405.
  8. [8]  Mamun, A.A., Shukla, P.K., and Eliasson, B. (2009), Solitary waves and double layers in a dusty electronegative plasma, Physical Review E, 80(4), 046406-046412.
  9. [9]  Shukla, P.K. and Silin, V.P. (1992), Dust ion-acoustic wave, Physica Scripta, 45(5), 508-508.
  10. [10]  Rao, N.N., Shukla, P.K., and Yu, M.Y. (1990), Dust acoustic waves in dusty plasmas, Planetary and Space Science, 38(4), 543-546.
  11. [11]  Tribeche, M., Hamdi, R., and Zerguini, T.H. (2000), Effects of electron depletion on nonlinear dusty plasma oscillations, Physics of Plasmas, 7(10), 4013-4017.
  12. [12]  Bharuthram, R. and Shukla, P.K. (1992), Large amplitude ion-acoustic solitons in a dusty plasma, Planetary and Space Science, 40(7), 973-977.
  13. [13]  Mamun, A.A. and Shukla, P.K. (2002), Electrostatic solitary and shock structures in dusty plasmas, Physica Scripta, 2000(T98), 107-114.
  14. [14]  Mamun, A.A. and Jahan, N. (2008), Roles of adiabaticity and dynamics of electrons and ions on dust-ion-acoustic K-dV solitons, Europhysics Letters, 84(3), 35001-35005.
  15. [15]  Verheest, F., Cattaert, T., and Hellberg, M.A. (2005), Ion and dust-acoustic solitons in dusty plasmas: Existence conditions for positive and negative potential solutions, Physics of plasmas, 12(8), 082308-082315.
  16. [16]  Hellberg, M.A., Verheest, F., and Cattaert, T. (2006), Existence domains for nonlinear structures in complex two-ion-temperature plasmas, Journal of Physics A: Mathematical and General, 39(12), 3137-3146.
  17. [17]  Ma, J.X. and Liu, J. (1997), Dust-acoustic soliton in a dusty plasma, Physics of Plasmas, 4(2), 253-255.
  18. [18]  Tribeche, M. and Amour, R. (2007), Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions, Physics of Plasmas, 14(10), 103707-103712.
  19. [19]  Younsi, S., and Tribeche, M. (2008), Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution, Physics of Plasmas, 15(7), 073706-073714.
  20. [20]  Tribeche, M., Mayout, S., and Amour, R. (2009), Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma, Physics of Plasmas, 16(4), 043706-043712.
  21. [21]  Tribeche, M. and Benzekka, M. (2009), Nonlinear dust acoustic waves in a charge varying ion-ion-dust plasma, Physics of Plasmas, 16(8), 083702-083708
  22. [22]  Amour, R. and Tribeche, M. (2010), Variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive electron velocity distribution, Physics of Plasmas, 17(6), 063702-063708.
  23. [23]  Taylor, R.J., Baker, D.R., and Ikezi, H. (1970), Formation and Interaction of Ion-Acoustic Solitions, Physical Review Letters, 25(1), 11-14.
  24. [24]  Ikezi, H. (1973), Experiments on ion-acoustic solitary waves, The Physics of Fluids, 16(10), 1668-1675.
  25. [25]  Kato, Y., Tajiri, M., and Taniuti, T. (1972), Precursor of ion-acoustic quasi-shock wave in collisionless plasma, The Physics of Fluids, 15(5), 865-870.
  26. [26]  Ichikawa, Y.H., Mitsu-Hashi, T., and Konno, K. (1976), Contribution of higher order terms in the reductive perturbation theory. I. A case of weakly dispersive wave, Journal of the physical society of Japan, 41(4), 1382-1386.
  27. [27]  El-Shewy, E.K. (2005), Effect of higher-order nonlinearity to nonlinear electron-acoustic solitary waves in an unmagnetized collisionless plasma, Chaos, Solitons $\&$ Fractals, 26(4), 1073-1079.
  28. [28]  Tiwari, R.S. and Mishra, M.K. (2006), Ion-acoustic dressed solitons in a dusty plasma, Physics of Plasmas, 13(6), 062112-062119.
  29. [29]  Tiwari, R.S., Kaushik, A., and Mishra, M.K. (2007), Effects of positron density and temperature on ion acoustic dressed solitons in an electron--positron--ion plasma, Physics Letters A, 365(4), 335-340.
  30. [30]  El-Labany, S.K., El-Taibany, W.F., and El-Abbasy, O.M. (2007), Nonlinear electron-acoustic waves with vortex-like electron distribution and electron beam in a strongly magnetized plasma, Chaos, Solitons $\&$ Fractals, 33(3), 813-822.
  31. [31]  Tiwari, R.S. (2007), Ion-acoustic dressed solitons in electron-positron-ion plasmas, Physics Letters A, 372(19), 3461-3466.
  32. [32]  Gill, T.S., Bala, P., and Kaur, H. (2008), Higher order solutions to ion-acoustic solitons in a weakly relativistic two-fluid plasma, Physics of Plasmas, 15(12), 122309-122319.
  33. [33]  Esfandyari-Kalejahi, A., Kourakis, I., and Shukla, P.K. (2008), Ion-acoustic waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam: Linear and higher-order nonlinear, Physics of Plasmas, 15(2), 022303-022313.
  34. [34]  Wang, Y., Dong, Y., and Eliasson, B. (2013), Dressed ion acoustic solitary waves in quantum plasmas with two polarity ions and relativistic electron beams, Physics Letters A, 377(38), 2604-2609.
  35. [35]  Amour, R., Ait Gougam, L., and Tribeche, M. (2015), Dressed ion-acoustic soliton in a plasma with electrons featuring Tsallis distribution, Physica A: Statistical Mechanics and its Applications, 436, 856-864.
  36. [36]  Benzekka, M. and Tribeche, M. (2018), Dust dressed solitons in a dusty plasma: The effect of polarization forces, Physica A: Statistical Mechanics and its Applications, 506, 578-586.
  37. [37]  Summers, D. and Thorne, R.M. (1991), The modified plasma dispersion function, Physics of Fluids B: Plasma Physics, 3(8), 1835-1847.
  38. [38]  Hellberg, M.A., Mace, R.L., Baluku, T.K., Kourakis, I., and Saini, N.S. (2009), Mathematical and physical aspects of Kappa velocity distribution, Physics of Plasmas, 16(9), 094701-094705.
  39. [39]  Goldman, M.V., Oppenheim, M.M., and Newman, D.L. (1999), Theory of localized bipolar wave-structures and nonthermal particle distributions in the auroral ionosphere, Nonlinear Processes in Geophysics, 6(3/4), 221-228.
  40. [40]  Thorne, R.M. and Summers, D. (1991), Landau damping in space plasmas, Physics of Fluids B: Plasma Physics, 3(8), 2117-2123.
  41. [41]  Mace, R.L. and Hellberg, M.A. (1995), A dispersion function for plasmas containing superthermal particles, Physics of Plasmas, 2(6), 2098-2109.
  42. [42]  Leubner, M.P. and Schupfer, N. (2002), A universal mirror wave-mode threshold condition for non-thermal space plasma environments, Nonlinear Processes in Geophysics, 9(2), 75-78.
  43. [43]  Leubner, M.P. (2004), Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions, Physics of Plasmas, 11(4), 1308-1316.
  44. [44]  Rubab, N., Murtaza, G., and Mushtaq, A. (2006), Effect of non-Maxwellian particle trapping and dust grain charging on dust acoustic solitary waves, Physics of plasmas, 13(11), 112104-112111.
  45. [45]  Rubab, N. and Murtaza, G. (2006), Dust-charge fluctuations with non-Maxwellian distribution functions, Physica Scripta, 73(2), 178-183.
  46. [46]  Abbasi, H. and Pajouh, H.H. (2007), Influence of trapped electrons on ion-acoustic solitons in plasmas with superthermal electrons, Physics of Plasmas, 14(1), 012307-012312.
  47. [47]  Na, S.C. and Jung, Y.D. (2008), Nonthermal effects on multielectron ionization processes in Lorentzian plasmas, Physics of Plasmas, 15(2), 024501-024503.
  48. [48]  Kumar, S. and Kumar, A. (2019), Lie symmetry reductions and group invariant solutions of (2 + 1)-dimensional modified Veronese web equation, Nonlinear Dynamics, 98(3), 1891-1903.
  49. [49]  Kumar, S., Kumar, A., and Kharbanda, H. (2020), Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations, Physica Scripta, 95(6), 065207.
  50. [50]  Kumar, S., Kumar, A., and Ma, W.X. (2021), Lie symmetries, optimal system and group-invariant solutions of the (3+1)-dimensional generalized KP equation, Chinese Journal of Physics, 69, 1-23.
  51. [51]  Kumar, S. and Kumar, A. (2022), Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a zig-zag optical lattice model using two integral schemes, Mathematics and Computers in Simulation, 201, 254-274.
  52. [52]  Kumar, S. and Kumar, A. (2023), Newly generated optical wave solutions and dynamical behaviors of the highly nonlinear coupled Davey-Stewartson Fokas system in monomode optical fibers, Optical and Quantum Electronics, 55(6), 566.
  53. [53]  Arab, N., Amour, R., and Bacha, M. (2019), Contribution of higher order corrections to the dust acoustic soliton energy in non-Maxwellian dusty plasma, The European Physical Journal D, 73, 1-7.
  54. [54]  Kechidi, Z., Louamri, M.M., Arab, N., and Amour, R. (2023), Effects of adiabatically trapped nonthermal polarization force on dressed dust acoustic solitary waves in non-maxwellian plasma, IEEE Transactions on Plasma Science, 51(6), 1540-1551.
  55. [55]  Khrapak, S.A., Ivlev, A.V., Yaroshenko, V.V. and Morfill, G.E. (2009), Influence of a polarization force on dust acoustic waves, Physical Review Letters, 102(24), 245004-245006.
  56. [56]  Roy, K., Chatterjee, P., and Kundu, S. (2012), Dust acoustic dressed solitons in a four component dusty plasma with nonthermal electron, Advances in Space Research, 50(9), 1288-1293.
  57. [57]  Maksimovic, M., Pierrard, V., and Riley, P. (1997), Ulysses electron distributions fitted with Kappa functions, Geophysical Research Letters, 24(9), 1151-1154.