Journal of Applied Nonlinear Dynamics
Contribution of Higher-Order Nonlinearity on Dust Acoustic Solitary Waves in
Complex Plasma with a High-Energy Tail Ion Distribution
Journal of Applied Nonlinear Dynamics 14(1) (2025) 141--151 | DOI:10.5890/JAND.2025.03.009
Smain Younsi1, Moufida Benzekka2, Nabil Arab1, Rabia Amour1
1 Plasma Physics Group, Theoretical Physics Laboratory,Faculty of Physics, University of Bab-Ezzouar,USTHB,
B.P. 32, El Alia, Algiers 16111, Algeria
2 Laboratoire de Physique des Particules et Physique
statistique, ENS, Vieux-Kouba, Algiers, Algeria
Download Full Text PDF
Abstract
The problem of dust acoustic dressed solitons is addressed in an unmagnetized
collisionless dusty plasma with ions satisfying a κ-distribution. The
approach based on the expanding of the Sagdeev potential up to the
fourth-order has been generalized to the non-Maxwellian dusty plasma. This
approach yields a second order inhomogeneous differential equation termed
dressed soliton. The resulting dressed soliton is then expressed as a sum of
the usual K-dV solution and the higher-order nonlinearity terms. The range of
main parameters (κ and λ) where the higher order correction is
valid is explored. In particular, the suprathermal parameter values required
to the valid dressed solitons are shifted toward higher values as the velocity
λ increases. Furthermore, our numerical investigations reveal that the
main quantities of all localized structures are significantly modified by the
suprathermal effects. Our results should help in providing a good fit between
theoretical and experimental results.
References
-
[1] | Goertz, C.K. (1989), Dusty plasmas in the
solar system, Reviews of Geophysics,
27(2),
271-292.
|
-
[2] | Mendis, D.A. and Rosenberg, M. (1994),
Cosmic dusty plasmas, Annual Review of Astronomy and Astrophysics,
32, 419-463.
|
-
[3] | Horanyi, M. (1996), Charged dust dynamique
in the solar system, Annual Review of Astronomy and Astrophysics,
34, 383-418.
|
-
[4] | Verheest, F. (2000), Waves in Dusty
Space Plasmas, Kluwer, Dordrecht.
|
-
[5] | Shukla, P.K. and Mamun, A.A. (2002),
Introduction to Dusty Plasma, Physics, Institute of Physics,
Bristol.
|
-
[6] | Mamun, A.A. and Cairns, R.
(2009), Dust-acoustic shock waves due to strong correlation among
arbitrarily charged dust, Physical Review E, 79(5),
055401-055404.
|
-
[7] | Mamun, A.A. and Shukla, P.K.
(2009), Effects of nonthermal distribution of electrons and polarity of net
dust-charge number density on nonplanar dust-ion-acoustic solitary waves,
Physical Review E, 80(3), 037401-037405.
|
-
[8] | Mamun, A.A., Shukla, P.K., and
Eliasson, B. (2009), Solitary waves and double layers in a dusty
electronegative plasma, Physical Review E, 80(4), 046406-046412.
|
-
[9] | Shukla, P.K. and Silin, V.P.
(1992), Dust ion-acoustic wave, Physica Scripta, 45(5),
508-508.
|
-
[10] | Rao, N.N., Shukla, P.K., and Yu, M.Y.
(1990), Dust acoustic waves in dusty plasmas, Planetary and Space
Science, 38(4), 543-546.
|
-
[11] | Tribeche, M., Hamdi, R., and
Zerguini, T.H. (2000), Effects of electron depletion on nonlinear dusty
plasma oscillations, Physics of Plasmas, 7(10), 4013-4017.
|
-
[12] | Bharuthram, R. and Shukla, P.K.
(1992), Large amplitude ion-acoustic solitons in a dusty plasma,
Planetary
and Space Science, 40(7), 973-977.
|
-
[13] | Mamun, A.A. and Shukla, P.K.
(2002), Electrostatic solitary and shock structures in dusty plasmas,
Physica Scripta, 2000(T98), 107-114.
|
-
[14] | Mamun, A.A. and Jahan, N. (2008),
Roles of adiabaticity and dynamics of electrons and ions on
dust-ion-acoustic K-dV solitons, Europhysics Letters, 84(3), 35001-35005.
|
-
[15] | Verheest, F., Cattaert, T., and Hellberg,
M.A. (2005), Ion and dust-acoustic solitons in dusty plasmas: Existence
conditions for positive and negative potential solutions, Physics of
plasmas, 12(8), 082308-082315.
|
-
[16] | Hellberg, M.A., Verheest, F., and
Cattaert, T. (2006), Existence domains for nonlinear structures in complex
two-ion-temperature plasmas, Journal of Physics A: Mathematical and
General, 39(12), 3137-3146.
|
-
[17] | Ma, J.X. and Liu, J. (1997),
Dust-acoustic soliton in a dusty plasma, Physics of Plasmas,
4(2), 253-255.
|
-
[18] | Tribeche, M. and Amour, R. (2007),
Nonlinear localized dust acoustic waves in a charge varying dusty plasma
with nonthermal ions, Physics of Plasmas, 14(10),
103707-103712.
|
-
[19] | Younsi, S., and Tribeche, M. (2008),
Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail
electron distribution, Physics of Plasmas, 15(7),
073706-073714.
|
-
[20] | Tribeche, M., Mayout, S., and Amour,
R. (2009), Effect of ion suprathermality on arbitrary amplitude dust
acoustic waves in a charge varying dusty plasma, Physics of Plasmas, 16(4), 043706-043712.
|
-
[21] | Tribeche, M. and Benzekka, M. (2009),
Nonlinear dust acoustic waves in a charge varying ion-ion-dust plasma,
Physics of Plasmas, 16(8), 083702-083708
|
-
[22] | Amour, R. and Tribeche, M. (2010), Variable
charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive
electron velocity distribution, Physics of Plasmas, 17(6),
063702-063708.
|
-
[23] | Taylor, R.J., Baker, D.R., and Ikezi, H.
(1970), Formation and Interaction of Ion-Acoustic Solitions, Physical Review Letters, 25(1), 11-14.
|
-
[24] | Ikezi, H. (1973), Experiments on ion-acoustic
solitary waves, The Physics of Fluids, 16(10), 1668-1675.
|
-
[25] | Kato, Y., Tajiri, M., and Taniuti, T. (1972),
Precursor of ion-acoustic quasi-shock wave in collisionless plasma,
The Physics of Fluids, 15(5), 865-870.
|
-
[26] | Ichikawa, Y.H., Mitsu-Hashi, T., and Konno,
K. (1976), Contribution of higher order terms in the reductive perturbation
theory. I. A case of weakly dispersive wave, Journal of the physical
society of Japan, 41(4), 1382-1386.
|
-
[27] | El-Shewy, E.K. (2005), Effect of
higher-order nonlinearity to nonlinear electron-acoustic solitary waves in
an unmagnetized collisionless plasma, Chaos, Solitons & Fractals,
26(4), 1073-1079.
|
-
[28] | Tiwari, R.S. and Mishra, M.K.
(2006), Ion-acoustic dressed solitons in a dusty plasma, Physics of
Plasmas, 13(6), 062112-062119.
|
-
[29] | Tiwari, R.S., Kaushik, A., and
Mishra, M.K. (2007), Effects of positron density and temperature on ion
acoustic dressed solitons in an electron--positron--ion plasma, Physics Letters A,
365(4), 335-340.
|
-
[30] | El-Labany, S.K., El-Taibany, W.F., and
El-Abbasy, O.M. (2007), Nonlinear electron-acoustic waves with vortex-like
electron distribution and electron beam in a strongly magnetized plasma,
Chaos, Solitons & Fractals, 33(3), 813-822.
|
-
[31] | Tiwari, R.S. (2007), Ion-acoustic dressed
solitons in electron-positron-ion plasmas, Physics Letters A,
372(19), 3461-3466.
|
-
[32] | Gill, T.S., Bala, P., and Kaur, H. (2008),
Higher order solutions to ion-acoustic solitons in a weakly relativistic
two-fluid plasma, Physics of Plasmas, 15(12),
122309-122319.
|
-
[33] | Esfandyari-Kalejahi, A., Kourakis, I.,
and Shukla, P.K. (2008), Ion-acoustic waves in a plasma consisting of
adiabatic warm ions, nonisothermal electrons, and a weakly relativistic
electron beam: Linear and higher-order nonlinear, Physics of Plasmas, 15(2), 022303-022313.
|
-
[34] | Wang, Y., Dong, Y., and Eliasson, B.
(2013), Dressed ion acoustic solitary waves in quantum plasmas with two
polarity ions and relativistic electron beams, Physics Letters A,
377(38), 2604-2609.
|
-
[35] | Amour, R., Ait Gougam, L., and Tribeche, M.
(2015), Dressed ion-acoustic soliton in a plasma with electrons featuring
Tsallis distribution, Physica A: Statistical Mechanics and its
Applications, 436, 856-864.
|
-
[36] | Benzekka, M. and Tribeche, M. (2018),
Dust dressed solitons in a dusty plasma: The effect of polarization forces,
Physica A: Statistical Mechanics and its Applications, 506, 578-586.
|
-
[37] | Summers, D. and Thorne, R.M. (1991), The
modified plasma dispersion function, Physics of Fluids B: Plasma
Physics, 3(8), 1835-1847.
|
-
[38] | Hellberg, M.A., Mace, R.L., Baluku, T.K., Kourakis, I., and Saini, N.S. (2009), Mathematical and physical aspects
of Kappa velocity distribution, Physics of Plasmas, 16(9), 094701-094705.
|
-
[39] | Goldman, M.V., Oppenheim, M.M., and
Newman, D.L. (1999), Theory of localized bipolar wave-structures and
nonthermal particle distributions in the auroral ionosphere, Nonlinear Processes in Geophysics, 6(3/4), 221-228.
|
-
[40] | Thorne, R.M. and Summers, D. (1991), Landau
damping in space plasmas, Physics of Fluids B: Plasma Physics,
3(8), 2117-2123.
|
-
[41] | Mace, R.L. and Hellberg, M.A. (1995), A
dispersion function for plasmas containing superthermal particles,
Physics of Plasmas, 2(6), 2098-2109.
|
-
[42] | Leubner, M.P. and
Schupfer, N. (2002), A universal mirror wave-mode threshold condition for
non-thermal space plasma environments, Nonlinear Processes in
Geophysics, 9(2), 75-78.
|
-
[43] | Leubner, M.P. (2004), Fundamental issues
on kappa-distributions in space plasmas and interplanetary proton
distributions, Physics of Plasmas, 11(4), 1308-1316.
|
-
[44] | Rubab, N., Murtaza, G., and Mushtaq, A.
(2006), Effect of non-Maxwellian particle trapping and dust grain charging
on dust acoustic solitary waves, Physics of plasmas, 13(11), 112104-112111.
|
-
[45] | Rubab, N. and Murtaza, G. (2006),
Dust-charge fluctuations with non-Maxwellian distribution functions, Physica Scripta, 73(2), 178-183.
|
-
[46] | Abbasi, H. and Pajouh, H.H. (2007),
Influence of trapped electrons on ion-acoustic solitons in plasmas with
superthermal electrons, Physics of Plasmas, 14(1),
012307-012312.
|
-
[47] | Na, S.C. and Jung, Y.D. (2008), Nonthermal
effects on multielectron ionization processes in Lorentzian plasmas, Physics of Plasmas, 15(2), 024501-024503.
|
-
[48] | Kumar, S. and Kumar, A. (2019), Lie symmetry
reductions and group invariant solutions of (2 + 1)-dimensional modified
Veronese web equation, Nonlinear Dynamics, 98(3),
1891-1903.
|
-
[49] | Kumar, S., Kumar, A., and Kharbanda, H.
(2020), Lie symmetry analysis and generalized invariant solutions of
(2+1)-dimensional dispersive long wave (DLW) equations, Physica
Scripta, 95(6), 065207.
|
-
[50] | Kumar, S., Kumar, A., and Ma, W.X. (2021),
Lie symmetries, optimal system and group-invariant solutions of the
(3+1)-dimensional generalized KP equation, Chinese Journal of Physics, 69, 1-23.
|
-
[51] | Kumar, S. and Kumar, A. (2022), Dynamical
behaviors and abundant optical soliton solutions of the cold bosonic atoms
in a zig-zag optical lattice model using two integral schemes, Mathematics and Computers in Simulation, 201, 254-274.
|
-
[52] | Kumar, S. and Kumar, A. (2023), Newly
generated optical wave solutions and dynamical behaviors of the highly
nonlinear coupled Davey-Stewartson Fokas system in monomode optical fibers,
Optical and Quantum Electronics, 55(6), 566.
|
-
[53] | Arab, N., Amour, R., and Bacha, M. (2019),
Contribution of higher order corrections to the dust acoustic soliton energy
in non-Maxwellian dusty plasma, The European Physical Journal D,
73, 1-7.
|
-
[54] | Kechidi, Z., Louamri, M.M., Arab, N., and
Amour, R. (2023), Effects of adiabatically trapped nonthermal polarization
force on dressed dust acoustic solitary waves in non-maxwellian plasma,
IEEE Transactions on Plasma Science, 51(6), 1540-1551.
|
-
[55] | Khrapak, S.A., Ivlev, A.V.,
Yaroshenko, V.V. and Morfill, G.E. (2009), Influence of a polarization
force on dust acoustic waves, Physical Review Letters, 102(24), 245004-245006.
|
-
[56] | Roy, K., Chatterjee, P., and Kundu, S.
(2012), Dust acoustic dressed solitons in a four component dusty plasma with
nonthermal electron, Advances in Space Research, 50(9),
1288-1293.
|
-
[57] | Maksimovic, M., Pierrard, V., and Riley,
P. (1997), Ulysses electron distributions fitted with Kappa functions,
Geophysical Research Letters, 24(9), 1151-1154.
|