Journal of Applied Nonlinear Dynamics
Contribution of Higher-Order Nonlinearity on Dust Acoustic Solitary Waves in
Complex Plasma with a High-Energy Tail Ion Distribution
Journal of Applied Nonlinear Dynamics 14(1) (2025) 141--151 | DOI:10.5890/JAND.2025.03.009
Smain Younsi$^{1}$, Moufida Benzekka$^{2}$, Nabil Arab$^{1}$, Rabia Amour$^{1}$
$^1$ Plasma Physics Group, Theoretical Physics Laboratory,Faculty of Physics, University of Bab-Ezzouar,USTHB,
B.P. 32, El Alia, Algiers 16111, Algeria
$^2$ Laboratoire de Physique des Particules et Physique
statistique, ENS, Vieux-Kouba, Algiers, Algeria
Download Full Text PDF
Abstract
The problem of dust acoustic dressed solitons is addressed in an unmagnetized
collisionless dusty plasma with ions satisfying a $\kappa$-distribution. The
approach based on the expanding of the Sagdeev potential up to the
fourth-order has been generalized to the non-Maxwellian dusty plasma. This
approach yields a second order inhomogeneous differential equation termed
dressed soliton. The resulting dressed soliton is then expressed as a sum of
the usual K-dV solution and the higher-order nonlinearity terms. The range of
main parameters ($\kappa$ and $\lambda$) where the higher order correction is
valid is explored. In particular, the suprathermal parameter values required
to the valid dressed solitons are shifted toward higher values as the velocity
$\lambda$ increases. Furthermore, our numerical investigations reveal that the
main quantities of all localized structures are significantly modified by the
suprathermal effects. Our results should help in providing a good fit between
theoretical and experimental results.
References
-
[1]  | Goertz, C.K. (1989), Dusty plasmas in the
solar system, Reviews of Geophysics,
27(2),
271-292.
|
-
[2]  | Mendis, D.A. and Rosenberg, M. (1994),
Cosmic dusty plasmas, Annual Review of Astronomy and Astrophysics,
32, 419-463.
|
-
[3]  | Horanyi, M. (1996), Charged dust dynamique
in the solar system, Annual Review of Astronomy and Astrophysics,
34, 383-418.
|
-
[4]  | Verheest, F. (2000), Waves in Dusty
Space Plasmas, Kluwer, Dordrecht.
|
-
[5]  | Shukla, P.K. and Mamun, A.A. (2002),
Introduction to Dusty Plasma, Physics, Institute of Physics,
Bristol.
|
-
[6]  | Mamun, A.A. and Cairns, R.
(2009), Dust-acoustic shock waves due to strong correlation among
arbitrarily charged dust, Physical Review E, 79(5),
055401-055404.
|
-
[7]  | Mamun, A.A. and Shukla, P.K.
(2009), Effects of nonthermal distribution of electrons and polarity of net
dust-charge number density on nonplanar dust-ion-acoustic solitary waves,
Physical Review E, 80(3), 037401-037405.
|
-
[8]  | Mamun, A.A., Shukla, P.K., and
Eliasson, B. (2009), Solitary waves and double layers in a dusty
electronegative plasma, Physical Review E, 80(4), 046406-046412.
|
-
[9]  | Shukla, P.K. and Silin, V.P.
(1992), Dust ion-acoustic wave, Physica Scripta, 45(5),
508-508.
|
-
[10]  | Rao, N.N., Shukla, P.K., and Yu, M.Y.
(1990), Dust acoustic waves in dusty plasmas, Planetary and Space
Science, 38(4), 543-546.
|
-
[11]  | Tribeche, M., Hamdi, R., and
Zerguini, T.H. (2000), Effects of electron depletion on nonlinear dusty
plasma oscillations, Physics of Plasmas, 7(10), 4013-4017.
|
-
[12]  | Bharuthram, R. and Shukla, P.K.
(1992), Large amplitude ion-acoustic solitons in a dusty plasma,
Planetary
and Space Science, 40(7), 973-977.
|
-
[13]  | Mamun, A.A. and Shukla, P.K.
(2002), Electrostatic solitary and shock structures in dusty plasmas,
Physica Scripta, 2000(T98), 107-114.
|
-
[14]  | Mamun, A.A. and Jahan, N. (2008),
Roles of adiabaticity and dynamics of electrons and ions on
dust-ion-acoustic K-dV solitons, Europhysics Letters, 84(3), 35001-35005.
|
-
[15]  | Verheest, F., Cattaert, T., and Hellberg,
M.A. (2005), Ion and dust-acoustic solitons in dusty plasmas: Existence
conditions for positive and negative potential solutions, Physics of
plasmas, 12(8), 082308-082315.
|
-
[16]  | Hellberg, M.A., Verheest, F., and
Cattaert, T. (2006), Existence domains for nonlinear structures in complex
two-ion-temperature plasmas, Journal of Physics A: Mathematical and
General, 39(12), 3137-3146.
|
-
[17]  | Ma, J.X. and Liu, J. (1997),
Dust-acoustic soliton in a dusty plasma, Physics of Plasmas,
4(2), 253-255.
|
-
[18]  | Tribeche, M. and Amour, R. (2007),
Nonlinear localized dust acoustic waves in a charge varying dusty plasma
with nonthermal ions, Physics of Plasmas, 14(10),
103707-103712.
|
-
[19]  | Younsi, S., and Tribeche, M. (2008),
Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail
electron distribution, Physics of Plasmas, 15(7),
073706-073714.
|
-
[20]  | Tribeche, M., Mayout, S., and Amour,
R. (2009), Effect of ion suprathermality on arbitrary amplitude dust
acoustic waves in a charge varying dusty plasma, Physics of Plasmas, 16(4), 043706-043712.
|
-
[21]  | Tribeche, M. and Benzekka, M. (2009),
Nonlinear dust acoustic waves in a charge varying ion-ion-dust plasma,
Physics of Plasmas, 16(8), 083702-083708
|
-
[22]  | Amour, R. and Tribeche, M. (2010), Variable
charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive
electron velocity distribution, Physics of Plasmas, 17(6),
063702-063708.
|
-
[23]  | Taylor, R.J., Baker, D.R., and Ikezi, H.
(1970), Formation and Interaction of Ion-Acoustic Solitions, Physical Review Letters, 25(1), 11-14.
|
-
[24]  | Ikezi, H. (1973), Experiments on ion-acoustic
solitary waves, The Physics of Fluids, 16(10), 1668-1675.
|
-
[25]  | Kato, Y., Tajiri, M., and Taniuti, T. (1972),
Precursor of ion-acoustic quasi-shock wave in collisionless plasma,
The Physics of Fluids, 15(5), 865-870.
|
-
[26]  | Ichikawa, Y.H., Mitsu-Hashi, T., and Konno,
K. (1976), Contribution of higher order terms in the reductive perturbation
theory. I. A case of weakly dispersive wave, Journal of the physical
society of Japan, 41(4), 1382-1386.
|
-
[27]  | El-Shewy, E.K. (2005), Effect of
higher-order nonlinearity to nonlinear electron-acoustic solitary waves in
an unmagnetized collisionless plasma, Chaos, Solitons $\&$ Fractals,
26(4), 1073-1079.
|
-
[28]  | Tiwari, R.S. and Mishra, M.K.
(2006), Ion-acoustic dressed solitons in a dusty plasma, Physics of
Plasmas, 13(6), 062112-062119.
|
-
[29]  | Tiwari, R.S., Kaushik, A., and
Mishra, M.K. (2007), Effects of positron density and temperature on ion
acoustic dressed solitons in an electron--positron--ion plasma, Physics Letters A,
365(4), 335-340.
|
-
[30]  | El-Labany, S.K., El-Taibany, W.F., and
El-Abbasy, O.M. (2007), Nonlinear electron-acoustic waves with vortex-like
electron distribution and electron beam in a strongly magnetized plasma,
Chaos, Solitons $\&$ Fractals, 33(3), 813-822.
|
-
[31]  | Tiwari, R.S. (2007), Ion-acoustic dressed
solitons in electron-positron-ion plasmas, Physics Letters A,
372(19), 3461-3466.
|
-
[32]  | Gill, T.S., Bala, P., and Kaur, H. (2008),
Higher order solutions to ion-acoustic solitons in a weakly relativistic
two-fluid plasma, Physics of Plasmas, 15(12),
122309-122319.
|
-
[33]  | Esfandyari-Kalejahi, A., Kourakis, I.,
and Shukla, P.K. (2008), Ion-acoustic waves in a plasma consisting of
adiabatic warm ions, nonisothermal electrons, and a weakly relativistic
electron beam: Linear and higher-order nonlinear, Physics of Plasmas, 15(2), 022303-022313.
|
-
[34]  | Wang, Y., Dong, Y., and Eliasson, B.
(2013), Dressed ion acoustic solitary waves in quantum plasmas with two
polarity ions and relativistic electron beams, Physics Letters A,
377(38), 2604-2609.
|
-
[35]  | Amour, R., Ait Gougam, L., and Tribeche, M.
(2015), Dressed ion-acoustic soliton in a plasma with electrons featuring
Tsallis distribution, Physica A: Statistical Mechanics and its
Applications, 436, 856-864.
|
-
[36]  | Benzekka, M. and Tribeche, M. (2018),
Dust dressed solitons in a dusty plasma: The effect of polarization forces,
Physica A: Statistical Mechanics and its Applications, 506, 578-586.
|
-
[37]  | Summers, D. and Thorne, R.M. (1991), The
modified plasma dispersion function, Physics of Fluids B: Plasma
Physics, 3(8), 1835-1847.
|
-
[38]  | Hellberg, M.A., Mace, R.L., Baluku, T.K., Kourakis, I., and Saini, N.S. (2009), Mathematical and physical aspects
of Kappa velocity distribution, Physics of Plasmas, 16(9), 094701-094705.
|
-
[39]  | Goldman, M.V., Oppenheim, M.M., and
Newman, D.L. (1999), Theory of localized bipolar wave-structures and
nonthermal particle distributions in the auroral ionosphere, Nonlinear Processes in Geophysics, 6(3/4), 221-228.
|
-
[40]  | Thorne, R.M. and Summers, D. (1991), Landau
damping in space plasmas, Physics of Fluids B: Plasma Physics,
3(8), 2117-2123.
|
-
[41]  | Mace, R.L. and Hellberg, M.A. (1995), A
dispersion function for plasmas containing superthermal particles,
Physics of Plasmas, 2(6), 2098-2109.
|
-
[42]  | Leubner, M.P. and
Schupfer, N. (2002), A universal mirror wave-mode threshold condition for
non-thermal space plasma environments, Nonlinear Processes in
Geophysics, 9(2), 75-78.
|
-
[43]  | Leubner, M.P. (2004), Fundamental issues
on kappa-distributions in space plasmas and interplanetary proton
distributions, Physics of Plasmas, 11(4), 1308-1316.
|
-
[44]  | Rubab, N., Murtaza, G., and Mushtaq, A.
(2006), Effect of non-Maxwellian particle trapping and dust grain charging
on dust acoustic solitary waves, Physics of plasmas, 13(11), 112104-112111.
|
-
[45]  | Rubab, N. and Murtaza, G. (2006),
Dust-charge fluctuations with non-Maxwellian distribution functions, Physica Scripta, 73(2), 178-183.
|
-
[46]  | Abbasi, H. and Pajouh, H.H. (2007),
Influence of trapped electrons on ion-acoustic solitons in plasmas with
superthermal electrons, Physics of Plasmas, 14(1),
012307-012312.
|
-
[47]  | Na, S.C. and Jung, Y.D. (2008), Nonthermal
effects on multielectron ionization processes in Lorentzian plasmas, Physics of Plasmas, 15(2), 024501-024503.
|
-
[48]  | Kumar, S. and Kumar, A. (2019), Lie symmetry
reductions and group invariant solutions of (2 + 1)-dimensional modified
Veronese web equation, Nonlinear Dynamics, 98(3),
1891-1903.
|
-
[49]  | Kumar, S., Kumar, A., and Kharbanda, H.
(2020), Lie symmetry analysis and generalized invariant solutions of
(2+1)-dimensional dispersive long wave (DLW) equations, Physica
Scripta, 95(6), 065207.
|
-
[50]  | Kumar, S., Kumar, A., and Ma, W.X. (2021),
Lie symmetries, optimal system and group-invariant solutions of the
(3+1)-dimensional generalized KP equation, Chinese Journal of Physics, 69, 1-23.
|
-
[51]  | Kumar, S. and Kumar, A. (2022), Dynamical
behaviors and abundant optical soliton solutions of the cold bosonic atoms
in a zig-zag optical lattice model using two integral schemes, Mathematics and Computers in Simulation, 201, 254-274.
|
-
[52]  | Kumar, S. and Kumar, A. (2023), Newly
generated optical wave solutions and dynamical behaviors of the highly
nonlinear coupled Davey-Stewartson Fokas system in monomode optical fibers,
Optical and Quantum Electronics, 55(6), 566.
|
-
[53]  | Arab, N., Amour, R., and Bacha, M. (2019),
Contribution of higher order corrections to the dust acoustic soliton energy
in non-Maxwellian dusty plasma, The European Physical Journal D,
73, 1-7.
|
-
[54]  | Kechidi, Z., Louamri, M.M., Arab, N., and
Amour, R. (2023), Effects of adiabatically trapped nonthermal polarization
force on dressed dust acoustic solitary waves in non-maxwellian plasma,
IEEE Transactions on Plasma Science, 51(6), 1540-1551.
|
-
[55]  | Khrapak, S.A., Ivlev, A.V.,
Yaroshenko, V.V. and Morfill, G.E. (2009), Influence of a polarization
force on dust acoustic waves, Physical Review Letters, 102(24), 245004-245006.
|
-
[56]  | Roy, K., Chatterjee, P., and Kundu, S.
(2012), Dust acoustic dressed solitons in a four component dusty plasma with
nonthermal electron, Advances in Space Research, 50(9),
1288-1293.
|
-
[57]  | Maksimovic, M., Pierrard, V., and Riley,
P. (1997), Ulysses electron distributions fitted with Kappa functions,
Geophysical Research Letters, 24(9), 1151-1154.
|