Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Gauge Functions for Forces and Nonlinearities in Classical Oscillators

Journal of Applied Nonlinear Dynamics 13(4) (2024) 835--846 | DOI:10.5890/JAND.2024.12.015

L. C. Vestal, Z. E. Musielak

Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA

Download Full Text PDF

 

Abstract

The abundance of gauge functions in dynamics is compelling because the total derivative of any scalar function can become a null Lagrangian, which makes the Euler-Lagrange equation identically zero. Thus, gauge functions have no direct effects on the resulting equations of motion. However, there is a special family of gauge functions that can be related directly to forces and nonlinearities in dynamical systems by using a method developed in this paper. To identify this special family, general gauge functions are constructed for second-order ordinary differential equations of motion describing one-dimensional dynamical systems. The gauge functions corresponding to forces and nonlinearities in a variety of known oscillators, including the Duffing oscillator, are presented, and the novel roles these functions play in classical dynamics are discussed.

References

  1. [1]  Olver, P.J. (1993), Applications of Lie Groups to Differential Equations, 107, Springer Science \& Business Media.
  2. [2]  Helmholtz, H. (1887), On the physical meaning of the principle of least action, Journal Fur Die Reine Und Angewandte Mathematik, 100, 213.
  3. [3]  Lopuszanski, J. (1999), The Inverse Variational Problem in Classical Mechanics, World Scientific.
  4. [4]  Olver, P.J. and Sivaloganathan, J. (1988), The structure of null Lagrangians, Nonlinearity, 1(2), 389.
  5. [5]  Crampin, M. and Saunders, D.J. (2005), On null Lagrangians, Differential Geometry and its Applications, 22(2), 131-146.
  6. [6]  Vitolo, R. (1999), On different geometric formulations of Lagrangian formalism, Differential Geometry and its Applications, 10(3), 225-255.
  7. [7]  Betounes, D. (1987), Differential geometric aspects of the Cartan form: Symmetry theory, Journal of mathematical physics, 28(10), 2347-2353.
  8. [8]  Krupka, D., Krupkov{a}, O., and Saunders, D. (2010), The Cartan form and its generalizations in the calculus of variations, International Journal of Geometric Methods in Modern Physics, 7(04), 631-654.
  9. [9]  Grigore, D.R. (1999), Trivial second‐order lagrangians in classical field theory, Fortschritte der Physik: Progress of Physics, 47(9‐10), 913-936.
  10. [10]  Krupka, D. and Musilov{a}, J. (1998), Trivial Lagrangians in field theory, Differential Geometry and its Applications, 9(3), 293-305.
  11. [11]  Gelfand, I.M. and Silverman, R.A. (2000), Calculus of Variations I, Courier Corporation.
  12. [12]  Anderson, D.R., Carlson, D.E., and Fried, E. (1999), A continuum-mechanical theory for nematic elastomers, Journal of Elasticity, 56, 33-58.
  13. [13]  Saccomandi, G.I.U.S.E.P.P.E. and Vitolo, R. (2006), Null Lagrangians for nematic elastomers, Journal of Mathematical Sciences, 136, 4470-4477.
  14. [14]  L{e}vy-Leblond, J.M. (1969), Group-theoretical foundations of classical mechanics: the Lagrangian gauge problem, Communications in Mathematical Physics, 12, 64-79.
  15. [15]  Musielak, Z.E. and Watson, T.B. (2020), Gauge functions and Galilean invariance of Lagrangians, Physics Letters A, 384(26), 126642.
  16. [16]  Musielak, Z.E. and Watson, T.B. (2020), General null Lagrangians, exact gauge functions and forces in Newtonian mechanics, Physics Letters A, 384(33), 126838.
  17. [17]  Musielak, Z.E., Vestal, L.C., Tran, B.D., and Watson, T.B. (2020), Gauge functions in classical mechanics: From undriven to driven dynamical systems, Physics, 2(3), 425-435.
  18. [18]  Vestal, L.C. and Musielak, Z.E. (2021), Bateman oscillators: Caldirola-Kanai and null Lagrangians and gauge functions, Physics, 3(2), 449-458.
  19. [19]  Bateman, H. (1931), On dissipative systems and related variational principles, Physical Review, 38(4), 815.
  20. [20]  Caldirola, P. (1941), Forze non conservative nella meccanica quantistica, Il Nuovo Cimento (1924-1942), 18(9), 393-400.
  21. [21]  Kanai, E. (1948), On the quantization of the dissipative systems, Progress of Theoretical Physics, 3(4), 440-442.
  22. [22]  Das, R. and Musielak, Z.E. (2022), General null Lagrangians and their novel role in classical dynamics, Physica Scripta, 97(12), 125213.
  23. [23]  Das, R. and Musielak, Z.E. (2023), New role of null lagrangians in derivation of equations of motion for dynamical systems, Physica Scripta, 98(4), 045201.
  24. [24]  Arnol'd, V.I. (2013), Mathematical methods of classical mechanics~(Vol. 60), Springer Science \& Business Media.
  25. [25]  Musielak, Z.E. (2008), Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients, Journal of Physics A: Mathematical and Theoretical, 41(5), 055205.
  26. [26]  Musielak, Z.E. (2009), General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems, Chaos, Solitons $\&$ Fractals, 42(5), 2645-2652.
  27. [27]  Musielak, Z.E. (2008), Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients, Journal of Physics A: Mathematical and Theoretical, 41(5), 055205.
  28. [28]  Saha, A. and Talukdar, B. (2014), Inverse variational problem for nonstandard Lagrangians, Reports on Mathematical Physics, 73(3), 299-309.
  29. [29]  Davachi, N. and Musielak, Z.E. (2019), Generalized non-standard Lagrangians, Journal of Undergraduate Reports in Physics, 29, 100004.
  30. [30]  El-Nabulsi, A.R. (2013), Non-linear dynamics with non-standard Lagrangians, Qualitative Theory of Dynamical Systems, 12(2), 273-291.
  31. [31]  El-Nabulsi, R.A. (2014), A generalized nonlinear oscillator from non-standard degenerate Lagrangians and its consequent Hamiltonian formalism, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 84, 563-569.
  32. [32]  El-Nabulsi, R.A. (2014), Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent, Computational and Applied Mathematics, 33, 163-179.
  33. [33]  Kudryashov, N.A. and Sinelshchikov, D.I. (2017), New non-standard Lagrangians for the Li{e}nard-type equations, Applied Mathematics Letters, 63, 124-129.
  34. [34]  El-Nabulsi, R.A. and Anukool, W. (2022), A new approach to nonlinear quartic oscillators, Archive of Applied Mechanics, 92(1), 351-362.
  35. [35]  Kudryashov, N.A. and Sinelshchikov, D.I. (2017), New non-standard Lagrangians for the Li{e}nard-type equations, Applied Mathematics Letters, 63, 124-129.
  36. [36]  Nucci, M.C. and Leach, P.G.L. (2007), Lagrangians galore, Journal of Mathematical Physics, 48(12), 123510.
  37. [37]  Nucci, M.C. and Leach, P.G.L. (2008), Jacobi's last multiplier and Lagrangians for multidimensional systems, Journal of Mathematical Physics, 49(7), 073517.
  38. [38]  Nucci, M.C. and Leach, P.G.L. (2008), The Jacobi Last Multiplier and its applications in mechanics, Physica Scripta, 78(6), 065011.
  39. [39]  Nucci, M.C. and Leach, P.G.L. (2011), Some Lagrangians for systems without a Lagrangian, Physica Scripta, 83(3), 035007.
  40. [40]  Nucci, M.C. and Tamizhmani, K.M. (2012), Lagrangians for biological models, Journal of Nonlinear Mathematical Physics, 19(3), 330-352.
  41. [41]  Choudhury, A.G., Guha, P., and Khanra, B. (2009), On the Jacobi last multiplier, integrating factors and the Lagrangian formulation of differential equations of the Painlev{e}--Gambier classification, Journal of Mathematical Analysis and Applications, 360(2), 651-664.
  42. [42]  Havas, P. (1957), The range of application of the Lagrange formalism---I, Il Nuovo Cimento (1955-1965), 5(3), 363-388.
  43. [43]  Musielak, Z.E. (2008), Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients, Journal of Physics A: Mathematical and Theoretical, 41(5), 055205.
  44. [44]  Kibble, T. and Berkshire, F.H. (2004), Classical Mechanics, world scientific publishing company.
  45. [45]  Jos{e}, J.V. and Saletan, E.J. (1998), Classical Dynamics: A Contemporary Approach, Cambridge University Press.
  46. [46]  Abraham, R. and Marsden, J.E. (2008), Foundations of mechanics~(No. 364), American Mathematical Soc.
  47. [47]  McQuarrie, D.A. (2003), Mathematical Methods for Scientists and Engineers, University science books.
  48. [48]  Hermann, M. and Saravi, M. (2016), Nonlinear Ordinary Differential Equations, Springer.
  49. [49]  Itzykson, C. and Zuber, J.B. (2006), Quantum Field Theory, Courier Corporation.
  50. [50]  Razavy, M. (2005), Classical and Quantum Dissipative Systems, World Scientific, Singapore.
  51. [51]  Vujanovic, B.D. and Jones, S.E. (1989), Variational Methods in Nonconservative Phenomena, Academic press.
  52. [52]  Udwadia, F.E. and Cho, H. (2013), Lagrangians for damped linear multi-degree-of-freedom systems, Journal of Applied Mechanics, 80(4), 041023.
  53. [53]  Segovia, A.L., Vestal, L.C., and Musielak, Z.E. (2022), Nonstandard null Lagrangians and gauge functions and dissipative forces in dynamics, Physics Letters A, 453, 128457.
  54. [54]  Musielak, Z.E. (2021), Nonstandard Null Lagrangians and Gauge Functions for Newtonian Law of Inertia, Physics, 3(4), 903-912.
  55. [55]  Arqub, O.A. (2016), The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations, Mathematical Methods in the Applied Sciences, 39(15), 4549-4562.
  56. [56]  Abu Arqub, O., Alsulami, H., and Alhodaly, M. (2022), Numerical Hilbert space solution of fractional Sobolev equation in $1+ 1$-dimensional space, Mathematical Sciences, 2022, 1-12.
  57. [57]  Cevikel, A.C., Bekir, A., Abu Arqub, O., and Abukhaled, M. (2022), Solitary wave solutions of Fitzhugh--Nagumo-type equations with conformable derivatives, Frontiers in Physics, 10, 1028668.