Journal of Applied Nonlinear Dynamics
Effect of Medication in a Glucose-Insulin Mathematical Model
Journal of Applied Nonlinear Dynamics 13(4) (2024) 795--803 | DOI:10.5890/JAND.2024.12.012
Evandro G. Seifert$^1$, Jos\'e Trobia$^2$, F\'atima E.
Cruziniani$^{1,2}$, Diogo L. M. de Souza$^1$, Elaheh Sayari$^1$, Enrique C.
Gabrick$^1$, Kelly C. Iarosz$^{1,3,4}$, Jos\'e D. Szezech Jr$^{1,2}$, Iber\^e L.
Caldas$^4$,\\ Antonio M. Batista$^{1,2,4}$
$^1$ Graduate Program in Sciences, State University of Ponta Grossa,
84030-900, Ponta Grossa, PR, Brazil
$^2$ Department of Mathematics and Statistics, State University of Ponta Grossa,
84030-900, Ponta Grossa, PR,
Brazil
$^3$ University Center UNIFATEB, 84266-010, Tel^emaco Borba, PR, Brazil
$^4$ Physics Institute, University of S~ao Paulo, 05508-900, S~ao Paulo, SP,
Brazil
Download Full Text PDF
Abstract
Insulin is a hormone that plays a crucial role in regulating the blood
glucose. It is secreted by the beta cells of the pancreas. A chronic disease,
known as diabetes, occurs when there is no effective use or no enough secretion
of insulin. The treatment, such as insulin injections and medicines, depends on
the type of diabetes. Mathematical models have been proposed to understand
the dynamics of the glucose-insulin regulatory system in different conditions.
In this work, we investigate a model that describes the dynamics of the
glucose and insulin concentrations with beta cells. We introduce the effect of
medication in a glucose-insulin model. It is analysed a treatment with
continuous medication and another with discontinuity in the drug use. We
identify parameter values related to medicines that maintain the blood glucose
concentration in a normal level.
Acknowledgments
This work was possible by partial financial support from the following Brazilian
government agencies: Funda\c c\~ao Arauc\'aria, CNPq (311168/2020-5,
350073/2022-8), CAPES, and S\~ao Paulo Research Foundation (FAPESP 2018/03211-6,
2022/13761-9). We would like to thank 105 Group Science\\
(www.105groupscience.com).
References
-
[1]  |
Petersen, M.C. and Shulman, G.I. (2018), Mechanisms of insulin action and
insulin resistance, Physiological Reviews, 98, 2133-2223.
|
-
[2]  |
Henquin, J.C., Ravier, M.A., Nenquin, M., Jonas, J.C., and Gilon, P. (2003),
Hierarchy of the beta-cell signals controlling insulin secretion, European
Journal of Clinical Investigation, 33, 742-750.
|
-
[3]  |
Tirone, T.A. and Brunicardi, F.C. (2001), Overview of glucose regulation,
World Journal of Surgery, 25, 461-467.
|
-
[4]  |
G\"uemes, M., Rahman, S.A., and Hussain, K. (2016), What is a normal blood
glucose?, Archives of Disease in Childhood, 101, 569-574.
|
-
[5]  |
Hu, R., Xia, C.-Q., Butfiloski, E., and Clare-Salzler, M. (2018), Effect of high
glucose on cytokine production by human peripheral blood immune cells and type I
interferon signaling in monocytes: Implications for the role of hyperglycemia
in the diabetes inflammatory process and host defense against infection, Clinical Immunology, 195, 139-148.
|
-
[6]  |
Cryer, P.E., Davis, S.N., and Shamoon, H. (20030, Hypoglycemia in diabetes, Diabetes Care, 26, 1902-1912.
|
-
[7]  |
Zammitt, N.N. and Frier, B.M. (2005), Hypoglycemia in type 2 diabetes:
Pathophysiology, frequency, and effects of different treatment modalities, Diabetes Care, 28, 2948-2961.
|
-
[8]  |
Zimmet, P.Z., Magliano, D.J., Herman, W.H., and Shaw, J.E. (2014), Diabetes: a
21st century challenge, Lancet Diabetes $\&$ Endocrinology, 2, 56-64.
|
-
[9]  |
DiMeglio, L.A., Evans-Molina, C., and Oram, R.A. (2018), Type 1 diabetes, The Lancet, 391, 2449-2462.
|
-
[10]  |
Chatterjee, S., Khunti, K., and Davies, M.J. (2017), Type 2 diabetes, The
Lancet, 389, 2239-2251.
|
-
[11]  |
Nathan, D.M. (2015), Diabetes: Advances in diagnosis and treatment, JAMA,
314, 1052-1062.
|
-
[12]  |
Berget, C., Messer, L.H., and Forlenza, G.P. (2019), A clinical overview of
insulin pump therapy for the management of diabetes: Past, present, and future
of intensive therapy, Diabetes Spectrum, 32, 194-204.
|
-
[13]  |
Bailey, C.J. (2017), Metformin: Historical overview, Diabetologia,
60, 1566-1576.
|
-
[14]  |
Cusi, K. and DeFronzo, R.A. (1998), Metformin: A review of its metabolics
effects, Diabetes Reviews, 6, 89-131.
|
-
[15]  |
Greville, G.D. (1943), The intravenous glucose tolerance equation, Biochemical Journal, 37, 17-24.
|
-
[16]  |
Bolie, V.W. (1961), Coefficients of normal blood glucose regulation, Journal
Applied Physiology, 16, 783-788.
|
-
[17]  |
Bajaj, J.S., Rao, G.S., Rao, J.S., and Khardori, R. (1987), A mathematical model
for insulin kinetics and its application to protein-deficient
(malnutrition-related) diabetes mallitus (PDDM), Journal of Theoretical
Biology, 126, 491-503.
|
-
[18]  |
Kartono, A., Malik, S., Syafutra, H., Wahyudi, S.T., and Sumaryada, T. (2019),
Pharmacokinetics simulation of metformin in type 2 diabetes mellitus, Journal of Physics: Conference Series, 1171, 012044.
|
-
[19]  |
Katz, A., Nambi, S.S., Mather, K., Baron, A.D., Follman, D.A., Sullivan, G., and
Quon, M.J. (2000), Quantitative insulin sensitivity check index: a simple,
accurate method for assessing insulin sensitivity in humans, The Journal of
Clinical Endocrinology $\&$ Metabolism, 85, 2402-2410.
|
-
[20]  |
Trobia, J., de Souza, S.L.T., dos Santos, M.A., Szezech Jr., J.D., Batista,
A.M., Borges, R.R., Pereira, L.S., Protachevicz, P.R., Caldas, I.L., and
Iarosz, K.C. (2022), On the dynamical behaviour of a glucose-insulin model, Chaos, Solitons $\&$ Fractals, 155, 111753.
|
-
[21]  |
Shabestari, P.S., Panahi, S., Hatef, B., Jafari, S., and Sprott, J.C. (2018), A
new chaotic model for glucose-insulin regulatory system, Chaos, Solitons
$\&$ Fractals, 112, 44-51.
|
-
[22]  |
Scheen, A.J. (1996), Clinical pharmacokinetics of metformin, Clinical
Pharmacokinetics, 30, 359- 371.
|
-
[23]  |
Holling, C.S. (1959), Some characteristics of simple types of predation and
parasitism, The Canadian Entomologist, 91, 385-398.
|
-
[24]  |
Rao, G.S., Bajaj, J.S., and Rao, J.S. (1990), A mathematical model for insulin
kinetics. II. Extension of the model to include response to oral glucose
administration and application to insulin-dependent diabetes mellitus (IDDM),
Journal of Theoretical Biology, 142, 473-483.
|
-
[25]  |
Foster, R.H. and Plosker, G.L. (2000), Glipizide. A review of the
pharmacoeconomic implications of the extended-release formulation in type 2
diabetes mellitus, Pharmacoeconomics, 18, 289-306.
|
-
[26]  |
Ackerman, E., Gatewood, L.C., Rosevear, J.W., and McGuckis, W.F. (1964), A
mathematical model of the glucose-tolerance test, Physics in Medicine $\&$
Biology, 9, 203-213.
|
-
[27]  |
Ackerman, E., Gatewood, L.C., Rosevear, J.W., and Molnar, G.D. (1965), Model
studies of blood-glucose regulation, The Bulletin of Mathematical
Biophysics, 27, 21-37.
|
-
[28]  |
Pinho, S.T.R, Freedman, H.I., and Nani, F. (2002), A chemotherapy model for the
treatment of cancer with metastasis, Mathematical and Computer Modelling,
36, 773-803.
|
-
[29]  |
Pinho, S.T.R., Rodrigues, D.S., and Mancera, P.F.A. (2011), A mathematical model
of chemotherapy response to tumour growth, Canadian Applied Mathematics
Quarterly, 4, 369-384.
|