Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Effect of Medication in a Glucose-Insulin Mathematical Model

Journal of Applied Nonlinear Dynamics 13(4) (2024) 795--803 | DOI:10.5890/JAND.2024.12.012

Evandro G. Seifert$^1$, Jos\'e Trobia$^2$, F\'atima E. Cruziniani$^{1,2}$, Diogo L. M. de Souza$^1$, Elaheh Sayari$^1$, Enrique C. Gabrick$^1$, Kelly C. Iarosz$^{1,3,4}$, Jos\'e D. Szezech Jr$^{1,2}$, Iber\^e L. Caldas$^4$,\\ Antonio M. Batista$^{1,2,4}$

$^1$ Graduate Program in Sciences, State University of Ponta Grossa, 84030-900, Ponta Grossa, PR, Brazil

$^2$ Department of Mathematics and Statistics, State University of Ponta Grossa, 84030-900, Ponta Grossa, PR, Brazil

$^3$ University Center UNIFATEB, 84266-010, Tel^emaco Borba, PR, Brazil

$^4$ Physics Institute, University of S~ao Paulo, 05508-900, S~ao Paulo, SP, Brazil

Download Full Text PDF

 

Abstract

Insulin is a hormone that plays a crucial role in regulating the blood glucose. It is secreted by the beta cells of the pancreas. A chronic disease, known as diabetes, occurs when there is no effective use or no enough secretion of insulin. The treatment, such as insulin injections and medicines, depends on the type of diabetes. Mathematical models have been proposed to understand the dynamics of the glucose-insulin regulatory system in different conditions. In this work, we investigate a model that describes the dynamics of the glucose and insulin concentrations with beta cells. We introduce the effect of medication in a glucose-insulin model. It is analysed a treatment with continuous medication and another with discontinuity in the drug use. We identify parameter values related to medicines that maintain the blood glucose concentration in a normal level.

Acknowledgments

This work was possible by partial financial support from the following Brazilian government agencies: Funda\c c\~ao Arauc\'aria, CNPq (311168/2020-5, 350073/2022-8), CAPES, and S\~ao Paulo Research Foundation (FAPESP 2018/03211-6, 2022/13761-9). We would like to thank 105 Group Science\\ (www.105groupscience.com).

References

  1. [1]  Petersen, M.C. and Shulman, G.I. (2018), Mechanisms of insulin action and insulin resistance, Physiological Reviews, 98, 2133-2223.
  2. [2]  Henquin, J.C., Ravier, M.A., Nenquin, M., Jonas, J.C., and Gilon, P. (2003), Hierarchy of the beta-cell signals controlling insulin secretion, European Journal of Clinical Investigation, 33, 742-750.
  3. [3]  Tirone, T.A. and Brunicardi, F.C. (2001), Overview of glucose regulation, World Journal of Surgery, 25, 461-467.
  4. [4]  G\"uemes, M., Rahman, S.A., and Hussain, K. (2016), What is a normal blood glucose?, Archives of Disease in Childhood, 101, 569-574.
  5. [5]  Hu, R., Xia, C.-Q., Butfiloski, E., and Clare-Salzler, M. (2018), Effect of high glucose on cytokine production by human peripheral blood immune cells and type I interferon signaling in monocytes: Implications for the role of hyperglycemia in the diabetes inflammatory process and host defense against infection, Clinical Immunology, 195, 139-148.
  6. [6]  Cryer, P.E., Davis, S.N., and Shamoon, H. (20030, Hypoglycemia in diabetes, Diabetes Care, 26, 1902-1912.
  7. [7]  Zammitt, N.N. and Frier, B.M. (2005), Hypoglycemia in type 2 diabetes: Pathophysiology, frequency, and effects of different treatment modalities, Diabetes Care, 28, 2948-2961.
  8. [8]  Zimmet, P.Z., Magliano, D.J., Herman, W.H., and Shaw, J.E. (2014), Diabetes: a 21st century challenge, Lancet Diabetes $\&$ Endocrinology, 2, 56-64.
  9. [9]  DiMeglio, L.A., Evans-Molina, C., and Oram, R.A. (2018), Type 1 diabetes, The Lancet, 391, 2449-2462.
  10. [10]  Chatterjee, S., Khunti, K., and Davies, M.J. (2017), Type 2 diabetes, The Lancet, 389, 2239-2251.
  11. [11]  Nathan, D.M. (2015), Diabetes: Advances in diagnosis and treatment, JAMA, 314, 1052-1062.
  12. [12]  Berget, C., Messer, L.H., and Forlenza, G.P. (2019), A clinical overview of insulin pump therapy for the management of diabetes: Past, present, and future of intensive therapy, Diabetes Spectrum, 32, 194-204.
  13. [13]  Bailey, C.J. (2017), Metformin: Historical overview, Diabetologia, 60, 1566-1576.
  14. [14]  Cusi, K. and DeFronzo, R.A. (1998), Metformin: A review of its metabolics effects, Diabetes Reviews, 6, 89-131.
  15. [15]  Greville, G.D. (1943), The intravenous glucose tolerance equation, Biochemical Journal, 37, 17-24.
  16. [16]  Bolie, V.W. (1961), Coefficients of normal blood glucose regulation, Journal Applied Physiology, 16, 783-788.
  17. [17]  Bajaj, J.S., Rao, G.S., Rao, J.S., and Khardori, R. (1987), A mathematical model for insulin kinetics and its application to protein-deficient (malnutrition-related) diabetes mallitus (PDDM), Journal of Theoretical Biology, 126, 491-503.
  18. [18]  Kartono, A., Malik, S., Syafutra, H., Wahyudi, S.T., and Sumaryada, T. (2019), Pharmacokinetics simulation of metformin in type 2 diabetes mellitus, Journal of Physics: Conference Series, 1171, 012044.
  19. [19]  Katz, A., Nambi, S.S., Mather, K., Baron, A.D., Follman, D.A., Sullivan, G., and Quon, M.J. (2000), Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans, The Journal of Clinical Endocrinology $\&$ Metabolism, 85, 2402-2410.
  20. [20]  Trobia, J., de Souza, S.L.T., dos Santos, M.A., Szezech Jr., J.D., Batista, A.M., Borges, R.R., Pereira, L.S., Protachevicz, P.R., Caldas, I.L., and Iarosz, K.C. (2022), On the dynamical behaviour of a glucose-insulin model, Chaos, Solitons $\&$ Fractals, 155, 111753.
  21. [21]  Shabestari, P.S., Panahi, S., Hatef, B., Jafari, S., and Sprott, J.C. (2018), A new chaotic model for glucose-insulin regulatory system, Chaos, Solitons $\&$ Fractals, 112, 44-51.
  22. [22]  Scheen, A.J. (1996), Clinical pharmacokinetics of metformin, Clinical Pharmacokinetics, 30, 359- 371.
  23. [23]  Holling, C.S. (1959), Some characteristics of simple types of predation and parasitism, The Canadian Entomologist, 91, 385-398.
  24. [24]  Rao, G.S., Bajaj, J.S., and Rao, J.S. (1990), A mathematical model for insulin kinetics. II. Extension of the model to include response to oral glucose administration and application to insulin-dependent diabetes mellitus (IDDM), Journal of Theoretical Biology, 142, 473-483.
  25. [25]  Foster, R.H. and Plosker, G.L. (2000), Glipizide. A review of the pharmacoeconomic implications of the extended-release formulation in type 2 diabetes mellitus, Pharmacoeconomics, 18, 289-306.
  26. [26]  Ackerman, E., Gatewood, L.C., Rosevear, J.W., and McGuckis, W.F. (1964), A mathematical model of the glucose-tolerance test, Physics in Medicine $\&$ Biology, 9, 203-213.
  27. [27]  Ackerman, E., Gatewood, L.C., Rosevear, J.W., and Molnar, G.D. (1965), Model studies of blood-glucose regulation, The Bulletin of Mathematical Biophysics, 27, 21-37.
  28. [28]  Pinho, S.T.R, Freedman, H.I., and Nani, F. (2002), A chemotherapy model for the treatment of cancer with metastasis, Mathematical and Computer Modelling, 36, 773-803.
  29. [29]  Pinho, S.T.R., Rodrigues, D.S., and Mancera, P.F.A. (2011), A mathematical model of chemotherapy response to tumour growth, Canadian Applied Mathematics Quarterly, 4, 369-384.