Journal of Applied Nonlinear Dynamics
Understanding HCV through the Lens of
Mathematical Modeling: A Comprehensive Review
Journal of Applied Nonlinear Dynamics 13(4) (2024) 761--780 | DOI:10.5890/JAND.2024.12.010
Bikash Kumar, Manoranjan K Singh, Debnarayan Khatua, Anupam De
Department of Mathematics, Magadh University, Bodh Gaya, Bihar, 824234, India
Department of Humanities and Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, A.P., 522213, India
School of Applied Sciences and Humanities, Haldia Institute of Technology, Haldia, West Bengal, 721657, India
Download Full Text PDF
Abstract
The World Health Organization announced worldwide hepatitis C virus (HCV) eradication goals in 2016, including an 80\% decrease in HCV transmission by 2030. People who inject the drug (PWID) are responsible for most of the new HCV infections.Hence, elimination initiatives must pay special attention to this group. Mathematical modeling can provide important information on the level and goals of intervention, which is urgently needed because governments seek guidance to eliminate PWID. A thorough assessment of the state of the mathematical modelling of hepatitis C virus (HCV) infection is given in this article. The article starts by reviewing HCV's fundamental biology and the difficulties in understanding the virus. The paper then focuses on the numerous mathematical models created to investigate various facets of HCV infection, such as viral dynamics, host-virus interactions, and therapeutic results. The review also discusses the most recent developments in systems biology and how they relate to the investigation of HCV. The study provides important insights into the dynamics of HCV-HIV coinfection and highlights the need for integrated approaches to prevent and manage the two infections. Mathematical modelling allows the analysis to simulate complex biological systems and predict disease. The focus on HCV-HIV coinfection provides a valuable perspective on the interplay between the two viruses. The article's conclusion discusses the possible advantages of a multidisciplinary approach for comprehending the intricate interactions between the virus and the host and future opportunities for mathematical modelling of HCV.
References
-
[1]  | Stanaway, J.D., Flaxman, A.D., Naghavi, M., Fitzmaurice, C., Vos, T., Abubakar, I., Abu-Raddad, L.J., Assadi, R., Bhala, N., Cowie, B., and Forouzanfour, M.H. (2016), The global burden of viral hepatitis from 1990 to 2013: findings from the global burden of disease study 2013, The Lancet, 388(10049), 1081–1088.
|
-
[2]  | Easterbrook, P., Luhmann, N., Newman, M., Walsh, N., Lesi, O., and Doherty, M. (2021), New who guidance for country validation of viral hepatitis B and C elimination, The Lancet Gastroenterology $\&$ Hepatology, 6(10), 778–780.
|
-
[3]  | Shepard, C.W., Finelli, L., and Alter, M.J. (2005), Global epidemiology of hepatitis C virus infection, The Lancet Infectious Diseases, 5(9), 558–567.
|
-
[4]  | Degenhardt, L., Peacock, A., Colledge, S., Leung, J., Grebely, J., Vickerman, P., Stone, J., Cunningham, E.B., Trickey, A., Dumchev, K., and Lynskey, M. (2017), Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: a multistage systematic review, The Lancet Global Health, 5(12), e1192–e1207.
|
-
[5]  | Platt, L., Minozzi, S., Reed, J., Vickerman, P., Hagan, H., French, C., Jordan, A., Degenhardt, L., Hope, V., Hutchinson, S., and Maher, L. (2017), Needle syringe programmes and opioid substitution therapy for preventing hepatitis C transmission in people who inject drugs, Cochrane Database of Systematic Reviews, 9, 1-82.
|
-
[6]  | Razavi, H., Robbins, S., Zeuzem, S., Negro, F., Buti, M., Duberg, A.S., Roudot-Thoraval, F., Craxi, A., Manns, M., Marinho, R.T., and Hunyady, B. (2017), Hepatitis C virus prevalence and level of intervention required to achieve the who targets for elimination in the european union by 2030: a modelling study, The lancet Gastroenterology $\&$ Hepatology, 2(5), 325–336.
|
-
[7]  | Corson, S., Greenhalgh, D., and Hutchinson, S. (2013), A time since onset of injection model for hepatitis C spread amongst injecting drug users, Journal of Mathematical Biology, 66(4-5), 935–978.
|
-
[8]  | Imran, M., Rafique, H., Khan, A., and Malik, T. (2014), A model of bi-mode transmission dynamics of hepatitis C with optimal control, Theory in Biosciences, 133, 91–109.
|
-
[9]  | Corson, S., Greenhalgh, D., Taylor, A., Palmateer, N., Goldberg, D., and Hutchinson, S. (2013), Modelling the prevalence of HCV amongst people who inject drugs: an investigation into the risks associated with injecting paraphernalia sharing, Drug and Alcohol Dependence, 133(1), 172–179.
|
-
[10]  | Durier, N., Nguyen, C., and White, L.J. (2012), Treatment of hepatitis C as prevention: a modeling case study in vietnam, Plos One, 7(4), e34548.
|
-
[11]  | Hellard, M.E., Jenkinson, R., Higgs, P., Stoove, M.A., Sacks-Davis, R., Gold, J., Hickman, M., Vickerman, P., and Martin, N.K. (2012), Modelling antiviral treatment to prevent hepatitis C infection among people who inject drugs in victoria, australia, Medical journal of Australia, 196(10), 638–641.
|
-
[12]  | Elbasha, E.H. (2013), Model for hepatitis C virus transmissions, Mathematical Biosciences $\&$ Engineering, 10(4), 1045.
|
-
[13]  | Hellard, M., Rolls, D.A., Sacks-Davis, R., Robins, G., Pattison, P., Higgs, P., Aitken, C., and McBryde, E. (2014), The impact of injecting networks on hepatitis C transmission and treatment in people who inject drugs, Hepatology, 60(6), 1861–1870.
|
-
[14]  | Bennett, H., McEwan, P., Sugrue, D., Kalsekar, A., and Yuan, Y. (2015), Assessing the long-term impact of treating hepatitis C virus (HCV)-infected people who inject drugs in the UK and the relationship between treatment uptake and efficacy on future infections, Plos One, 10(5), e0125846.
|
-
[15]  | He, T., Li, K., Roberts, M.S., Spaulding, A.C., Ayer, T., Grefenstette, J.J., and Chhatwal, J. (2016), Prevention of hepatitis C by screening and treatment in us prisons, Annals of Internal Medicine, 164(2), 84–92.
|
-
[16]  | van Santen, D.K., de Vos, A.S., Matser, A., Willemse, S.B., Lindenburg, K., Kretzschmar, M.E., Prins, M., and De Wit, G.A. (2016), Cost-effectiveness of hepatitis C treatment for people who inject drugs and the impact of the type of epidemic; extrapolating from amsterdam, the netherlands, Plos one, 11(10), e0163488.
|
-
[17]  | Cousien, A., Leclerc, P., Morissette, C., Bruneau, J., Roy, E., Tran, V.C., Yazdanpanah, Y., and Cox, J. (2017), The need for treatment scale-up to impact HCV transmission in people who inject drugs in montreal, Canada: a modelling study, BMC Infectious Diseases, 17(1), 1–10.
|
-
[18]  | Metzig, C., Surey, J., Francis, M., Conneely, J., Abubakar, I., and White, P.J. (2017), Impact of hepatitis C treatment as prevention for people who inject drugs is sensitive to contact network structure, Scientific Reports, 7(1), 1833.
|
-
[19]  | Rolls, D., Daraganova, G., Sacks-Davis, R., Hellard, M., Jenkinson, R., McBryde, E., Pattison, P., and Robins, G. (2012), Modelling hepatitis C transmission over a social network of injecting drug users, Journal of Theoretical Biology, 297, 73–87.
|
-
[20]  | Rolls, D.A., Sacks-Davis, R., Jenkinson, R., McBryde, E., Pattison, P., Robins, G., and Hellard, M. (2013), Hepatitis C transmission and treatment in contact networks of people who inject drugs, Plos one, 8(11), e78286.
|
-
[21]  | De Vos, A. and Kretzschmar, M. (2014), Benefits of hepatitis C virus treatment: A balance of preventing onward transmission and re-infection, Mathematical Biosciences, 258, 11–18.
|
-
[22]  | De Vos, A.S., Prins, M., and Kretzschmar, M.E. (2015), Hepatitis C virus treatment as prevention among injecting drug users: who should we cure first?, Addiction, 110(6), 975–983.
|
-
[23]  | Stone, J., Martin, N.K., Hickman, M., Hellard, M., Scott, N., McBryde, E., Drummer, H., and Vickerman, P. (2016), The potential impact of a hepatitis C vaccine for people who inject drugs: is a vaccine needed in the age of direct-acting antivirals?, Plos One, 11(5), e0156213.
|
-
[24]  | Scott, N., Olafsson, S., Gottfreosson, M., Tyrfingsson, T., Runarsdottir, V., Hansdottir, I., Hernandez, U.B., Sigmundsdóttir, G., and Hellard, M. (2018), Modelling the elimination of hepatitis C as a public health threat in iceland: a goal attainable by 2020, Journal of Hepatology, 68(5), 932–939.
|
-
[25]  | Cousien, A., Tran, V.C., Deuffic-Burban, S., Jauffret-Roustide, M., Dhersin, J.S., and Yazdanpanah, Y. (2016), Hepatitis c treatment as prevention of viral transmission and liver-related morbidity in persons who inject drugs, Hepatology, 63(4), 1090–1101.
|
-
[26]  | Martin, N.K., Vickerman, P., Miners, A., Foster, G.R., Hutchinson, S.J., Goldberg, D.J., and Hickman, M. (2012), Cost-effectiveness of hepatitis C virus antiviral treatment for injection drug user populations, Hepatology, 55(1), 49–57.
|
-
[27]  | Martin, N.K., Hickman, M., Miners, A., Hutchinson, S.J., Taylor, A., and Vickerman, P. (2013), Cost-effectiveness of hcv case-finding for people who inject drugs via dried blood spot testing in specialist addiction services and prisons, BMJ Open, 3(8), e003153.
|
-
[28]  | Martin, N.K., Vickerman, P., Dore, G.J., Grebely, J., Miners, A., Cairns, J., Foster, G.R., Hutchinson, S.J., Goldberg, D.J., Martin, T.C., and Ramsay, M. (2016), Prioritization of HCV treatment in the direct-acting antiviral era: an economic evaluation, Journal of Hepatology, 65(1), 17–25.
|
-
[29]  | Scott, N., Sacks-Davis, R., Pedrana, A., Doyle, J., Thompson, A., and Hellard, M. (2018), Eliminating hepatitis C: The importance of frequent testing of people who inject drugs in high-prevalence settings,Journal of Viral Hepatitis, 25(12), 1472–1480.
|
-
[30]  | Gountas, I., Sypsa, V., Anagnostou, O., Martin, N., Vickerman, P., Kafetzopoulos, E., and Hatzakis, A. (2017), Treatment and primary prevention in people who inject drugs for chronic hepatitis c infection: is elimination possible in a high-prevalence setting?, Addiction, 112(7), 1290–1299.
|
-
[31]  | Fraser, H., Zibbell, J., Hoerger, T., Hariri, S., Vellozzi, C., Martin, N.K., Kral, A.H., Hickman, M., Ward, J.W., and Vickerman, P. (2018), Scaling-up hcv prevention and treatment interventions in rural united states—model projections for tackling an increasing epidemic, Addiction, 113(1), 173–182.
|
-
[32]  | Scott, N., McBryde, E.S., Thompson, A., Doyle, J.S., and Hellard, M.E. (2017), Treatment scale-up to achieve global HCV incidence and mortality elimination targets: a cost-effectiveness model, Gut, 66(8), 1507–1515.
|
-
[33]  | Gountas, I., Sypsa, V., Anagnostou, O., Martin, N., Vickerman, P., Kafetzopoulos, E., and Hatzakis, A. (2017), Treatment and primary prevention in people who inject drugs for chronic hepatitis c infection: is elimination possible in a high-prevalence setting?, Addiction, 112(7), 1290–1299.
|
-
[34]  | Martin, N.K., Pitcher, A.B., Vickerman, P., Vassall, A., and Hickman, M. (2011), Optimal control of hepatitis C antiviral treatment programme delivery for prevention amongst a population of injecting drug users, Plos One, 6(8), e22309.
|
-
[35]  | Martin, N.K., Vickerman, P., and Hickman, M. (2011), Mathematical modelling of hepatitis C treatment for injecting drug users, Journal of Theoretical Biology, 274(1), 58–66.
|
-
[36]  | Hellard, M., McBryde, E., Davis, R.S., Rolls, D.A., Higgs, P., Aitken, C., Thompson, A., Doyle, J., Pattison, P., and Robins, G. (2015), Hepatitis C transmission and treatment as prevention–the role of the injecting network, International Journal of Drug Policy, 26(10), 958–962.
|
-
[37]  | Cousien, A., Tran, V.C., Deuffic-Burban, S., Jauffret-Roustide, M., Mabileau, G., Dhersin, J.S., and Yazdan-panah, Y. (2018), Effectiveness and cost-effectiveness of interventions targeting harm reduction and chronic hepatitis c cascade of care in people who inject drugs: the case of france, Journal of Viral Hepatitis, 25(10), 1197–1207.
|
-
[38]  | Echevarria, D., Gutfraind, A., Boodram, B., Major, M., Del Valle, S., Cotler, S.J., and Dahari, H. (2015), Mathematical modeling of hepatitis C prevalence reduction with antiviral treatment scale-up in persons who inject drugs in metropolitan chicago, Plos One, 10(8), e0135901.
|
-
[39]  | Martin, N.K., Foster, G.R., Vilar, J., Ryder, S.M.E.C., E. Cramp, M., Gordon, F., Dillon, J.F., Craine, N., Busse, H., Clements, A., and Hutchinson, S.J. (2015), Hcv treatment rates and sustained viral response among people who inject drugs in
seven uk sites: real world results and modelling of treatment impact, Journal of Viral Hepatitis, 22(4), 399–408.
|
-
[40]  | Fraser, H., Martin, N.K., Brummer-Korvenkontio, H., Carrieri, P., Dalgard, O., Dillon, J., Goldberg, D., Hutchinson, S., Jauffret-Roustide, M., Kaberg, M., and Matser, A.A. (2018), Model projections on the impact of HCV treatment in the prevention of HCV transmission among people who inject drugs in europe, Journal of Hepatology, 68(3), 402–411.
|
-
[41]  | Martin, N.K., Vickerman, P., Brew, I.F., Williamson, J., Miners, A., Irving, W.L., Saksena, S., Hutchinson, S.J., Mandal, S., O'Moore, E., and Hickman, M. (2016), Is increased hcv case-finding combined with current or 8–12 week daa therapy cost-effective in uk prisons? a prevention benefit analysis, Hepatology (Baltimore, Md.), 63(6), 1796.
|
-
[42]  | Stone, J., Martin, N.K., Hickman, M., Hutchinson, S.J., Aspinall, E., Taylor, A., Munro, A., Dunleavy, K., Peters, E., Bramley, P., and Hayes, P.C. (2017), Modelling the impact of incarceration and prison-based hepatitis C virus (HCV) treatment on hcv transmission among people who inject drugs in scotland, Addiction, 112(7), 1302–1314.
|
-
[43]  | Madin-Warburton, M., Pitcher, A., Martin, N. (2016), The impact of dynamic transmission modelling on the estimated cost-effectiveness of treatment for chronic hepatitis C in the united kingdom, Value in Health, 19(7), A347.
|
-
[44]  | Fu, R., Gutfraind, A., Brandeau, M.L. (2016), Modeling a dynamic bi-layer contact network of injection drug users and the spread of blood-borne infections, Mathematical Biosciences, 273, 102–113.
|
-
[45]  | Scott, N., McBryde, E., Vickerman, P., Martin, N.K., Stone, J., Drummer, H., and Hellard, M. (2015), The role of a hepatitis C virus vaccine: modelling the benefits alongside direct-acting antiviral treatments, BMC Medicine, 13(1), 1–12.
|
-
[46]  | Scott, N., Olafsson, S., Gottfreosson, M., Tyrfingsson, T., Runarsdottir, V., Hansdottir, I., Hernandez, U.B., Sigmundsdóttir, G., and Hellard, M. (2018), Modelling the elimination of hepatitis C as a public health threat in iceland: a goal attainable by 2020, Journal of Hepatology, 68(5), 932–939.
|
-
[47]  | Martin, N.K., Vickerman, P., Dore, G.J., Grebely, J., Miners, A., Cairns, J., Foster, G.R., Hutchinson, S.J., Goldberg, D.J., Martin, T.C., and Ramsay, M. (2016), Prioritization of HCV treatment in the direct-acting antiviral era: an economic evaluation, Journal of Hepatology, 65(1), 17–25.
|
-
[48]  | Scott, N., Sacks-Davis, R., Pedrana, A., Doyle, J., Thompson, A., and Hellard, M. (2018), Eliminating hepatitis C: The importance of frequent testing of people who inject drugs in high-prevalence settings. Journal of Viral Hepatitis, 25(12), 1472–1480.
|
-
[49]  | Sadki, M., Danane, J., and Allali, K. (2023), Hepatitis C virus fractional-order model: mathematical analysis, Modeling
Earth Systems and Environment, 9, 1695–1707.
|
-
[50]  | Tresna, S., Anggriani, N., and Supriatna, A. (2022), Mathematical model of HCV transmission with treatment and educational effort, Communications in Mathematical Biology and Neuroscience, 2022, 1-17.
|
-
[51]  | Shukla, N., Angelopoulou, A., and Hodhod, R. (2022), Non-invasive diagnosis of liver fibrosis in chronic hepatitis C using mathematical modeling and simulation, Electronics, 11(8), 1260.
|
-
[52]  | Reinharz, V., Churkin, A., Dahari, H., and Barash, D. (2022), Advances in parameter estimation and learning from data for mathematical models of hepatitis C viral kinetics, Mathematics, 10(12), 2136.
|
-
[53]  | Busschots, D., Ho, E., Blach, S., Nevens, F., Razavi, H., Van Damme, B., Vanwolleghem, T., and Robaeys, G. (2022), Ten years countdown to hepatitis C elimination in belgium: a mathematical modeling approach, BMC Infectious Diseases, 22(1), 397.
|
-
[54]  | Lawitz, E., Gane, E., Pearlman, B., Tam, E., Ghesquiere, W., Guyader, D., Alric, L., Bronowicki, J.P., Lester, L., Sievert, W., and Ghalib, R. (2015), Efficacy and safety of 8 weeks versus 12 weeks of treatment with grazoprevir (mk-5172) and elbasvir (mk-8742) with or without ribavirin in patients with hepatitis c virus genotype 1 mono-infection and hiv/hepatitis C virus co-infection (c-worthy): a randomised, open-label phase 2 trial, The Lancet, 385(9973), 1087–1097.
|
-
[55]  | Canini, L., Imamura, M., Kawakami, Y., Uprichard, S.L., Cotler, S.J., Dahari, H., and Chayama, K. (2017), Hcv kinetic and modeling analyses project shorter durations to cure under combined therapy with daclatasvir and asunaprevir in chronic HCV-infected patients, Plos One, 12(12), e0187409.
|
-
[56]  | Gambato, M., Canini, L., Lens, S., Graw, F., Perpi\~{n}an, E., Londo\~{n}o, M.C., Uprichard, S.L., Mari\~{n}o, Z., Reverter, E., Bartres, C., and Gonzalez, P. (2019), Early HCV viral kinetics under daas may optimize duration of therapy in patients with compensated cirrhosis, Liver International, 39(5), 826–834.
|
-
[57]  | Dasgupta, S., Imamura, M., Gorstein, E., Nakahara, T., Tsuge, M., Churkin, A., Yardeni, D., Etzion, O., Uprichard, S.L., Barash, D., and Cotler, S.J. (2020), Modeling-based response-guided therapy for chronic hepatitis C under glecaprevir/pibrentasvir may identify patients for ultra-short treatment duration, The Journal of Infectious Diseases, 222(7), 1165–9.
|
-
[58]  | Etzion, O., Dahari, H., Yardeni, D., Issachar, A., Nevo-Shor, A., Cohen-Naftaly, M., Ashur, Y., Uprichard, S.L., Arbib, O.S., Munteanu, D., and Braun, M. (2020), Response guided therapy for reducing duration of direct acting antivirals in chronic hepatitis C infected patients: a pilot study, Scientific Reports, 10(1), 1–9.
|
-
[59]  | Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., and Ho, D.D. (1996), HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271(5255), 1582–1586.
|
-
[60]  | Nandipati, S.C., XinYing, C., and Wah, K.K. (2020), Hepatitis C virus (HCV) prediction by machine learning techniques, Applications of Modelling and Simulation, 4, 89–100.
|
-
[61]  | Eliyahu, S., Sharabi, O., Elmedvi, S., Timor, R., Davidovich, A., Vigneault, F., Clouser, C., Hope, R., Nimer, A., Braun, M., and Weiss, Y.Y. (2018), Antibody repertoire analysis of hepatitis C virus infections identifies immune signatures associated with spontaneous clearance, Frontiers in Immunology, 9, 3004.
|
-
[62]  | Ali, M.M.R., Helmy, Y., Khedr, A.E., and Abdo, A. (2018), Intelligent decision framework to explore and control infection of hepatitis C virus, In: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), Springer, 264–274.
|
-
[63]  | Hashem, S., ElHefnawi, M., Habashy, S., El-Adawy, M., Esmat, G., Elakel, W., Abdelazziz, A.O., Nabeel, M.M., Abdelmaksoud, A.H., Elbaz, T.M., and Shousha, H.I. (2020), Machine learning prediction models for diagnosing hepato-cellular carcinoma with HCV-related chronic liver disease, Computer Methods and Programs in Biomedicine, 196, 105551.
|
-
[64]  | KayvanJoo, A.H., Ebrahimi, M., and Haqshenas, G. (2014), Prediction of hepatitis C virus interferon/ribavirin therapy outcome based on viral nucleotide attributes using machine learning algorithms, BMC Research Notes, 7(1),1–11.
|
-
[65]  | Churkin, A., Kriss, S., Uziel, A., Goyal, A., Zakh, R., Cotler, S.J., Etzion, O., Shlomai, A., Rotstein, H.G., Dahari, H., and Barash, D. (2022), Machine learning for mathematical models of HCV kinetics during antiviral therapy, Mathematical Biosciences, 343, 108756.
|
-
[66]  | Marathe, G., Moodie, E.E., Brouillette, M.J., Cox, J., Cooper, C., Delaunay, C.L., Conway, B., Hull, M., Martel-Laferrière, V., Vachon, M.L., and Walmsley, S. (2022), Predicting the presence of depressive symptoms in the HIV-HCV co-infected population in canada using supervised machine learning, BMC Medical Research Methodology, 22(1), 1–11
|
-
[67]  | Yaganoglu, M. (2022), Hepatitis C virus data analysis and prediction using machine learning, Data $\&$ Knowledge Engineering, 142, 102087.
|
-
[68]  | Kamboj, S., Rajput, A., Rastogi, A., Thakur, A., and Kumar, M. (2022), Targeting non-structural proteins of hepatitis c virus for predicting repurposed drugs using qsar and machine learning approaches, Computational and Structural Biotechnology Journal, 20, 3422–3438.
|
-
[69]  | Singh, U., Gourisaria, M.K., and Mishra, B.K. (2022), A dual dataset approach for the diagnosis of hepatitis c virus using machine learning, In: 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), IEEE, 1–6.
|
-
[70]  | Park, H., Lo-Ciganic, W.H., Huang, J., Wu, Y., Henry, L., Peter, J., Sulkowski, M.,
and Nelson, D.R. (2022), Machine learning algorithms for predicting direct-acting antiviral treatment failure in chronic hepatitis C: An hcv-target analysis, Hepatology, 76(2), 483–491.
|
-
[71]  | Akter, L. (2022), Detection of hepatitis C virus progressed patient's liver condition using machine learning. In:International Conference on Innovative Computing and Communications: Proceedings of ICICC 2021, Springer, 1, 71–80.
|
-
[72]  | Rigg, J., Doyle, O., McDonogh, N., Leavitt, N., Ali, R., Son, A., and Kreter, B. (2023), Finding undiagnosed patients with hepatitis C virus: an application of machine learning to us ambulatory electronic medical records, BMJ Health $\&$ Care Informatics, 30(1), e100651.
|
-
[73]  | Akbulut, S., Kucukakcali, Z., and Colak, C. (2022), Machine learning-based classification of hbv and hcv- related hepatocellular carcinoma using genomic biomarkers, Journal of Istanbul Faculty of Medicine, 85(4), 532–540.
|
-
[74]  | Vickerman, P., Martin, N.K., and Hickman, M. (2012), Understanding the trends in HIV and hepatitis C prevalence amongst injecting drug users in different settings—implications for intervention impact, Drug and Alcohol Dependence, 123(1-3), 122–131.
|
-
[75]  | Vickerman, P., Martin, N.K., Roy, A., Beattie, T., Des Jarlais, D., Strathdee, S., Wiessing, L., Hickman, M., and Emcdda, C.G. (2013), Is the HCV–HIV co-infection prevalence amongst injecting drug users a marker for the level of sexual and injection related hiv transmission?, Drug and Alcohol Dependence, 132(1-2), 172–181.
|
-
[76]  | Sanchez, A.Y.C., Aerts, M., Shkedy, Z., Vickerman, P., Faggiano, F., Salamina, G.,
and Hens, N. (2013), A mathematical model for HIV and hepatitis C co-infection and its assessment from a statistical perspective, Epidemics, 5(1), 56–66.
|
-
[77]  | De Vos, A.S. and Kretzschmar, M.E. (2013), The efficiency of targeted intervention in limiting the spread of hiv and hepatitis C virus among injecting drug users, Journal of Theoretical Biology, 333, 126–134.
|
-
[78]  | Virlogeux, V., Zoulim, F., Pugliese, P., Poizot-Martin, I., Valantin, M.A., Cuzin, L., Reynes, J., Billaud, E., Huleux, T., Bani-Sadr, F., and Rey, D. (2017), Modeling HIV-HCV coinfection epidemiology in the direct-acting antiviral era: the road to elimination, BMC Medicine, 15(1), 1–11.
|
-
[79]  | Bhunu, C. and Mushayabasa, S. (2013), Modelling the transmission dynamics of HIV/AIDS and hepatitis C virus co-infection, HIV $\&$ AIDS Review, 12(2), 37–42.
|
-
[80]  | Carvalho, A.R. and Pinto, C.M. (2014), A coinfection model for HIV and HCV, Biosystems, 124, 46–60.
|
-
[81]  | Pinto, C.M. and Carvalho, A. (2015), Effects of treatment, awareness and condom use in a coinfection model for HIV and HCV in MSM, Journal of Biological Systems, 23(02), 165–193.
|
-
[82]  | Abiodun, O.E., Adebimpe, O., Ndako, J.A., Oludoun, O., Aladeitan, B., and Adeniyi, M. (2022), Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, F1000Research, 11(1153), 1153.
|
-
[83]  | Mayanja, E., Luboobi, L.S., Kasozi, J., and Nsubuga, R.N. (2022), Mathematical modelling of HIV-HCV co-infection dynamics in presence of HIV therapy, BIOMATH, 11(1), 2207158–2207158.
|
-
[84]  | Castry, M., Cousien, A., Champenois, K., Supervie, V., Velter, A., Ghosn, J., Yazdanpanah, Y., Paltiel, A.D., and Deuffic-Burban, S. (2022), Cost-effectiveness of hepatitis C virus test-and-treat and risk reduction strategies among men who have sex with men living with HIV in france, Journal of the International AIDS Society, 25(12), e26035.
|
-
[85]  | Faniran, T.S., Adewole, M.O., Ahmad, H., and Abdullah, F.A. (2023), Dynamics of tuberculosis in HIV–HCV co-infected cases, International Journal of Biomathematics, 16(03), 2250091.
|
-
[86]  | Stone, J., Fraser, H., Walker, J.G., Mafirakureva, N., Mundia, B., Cleland, C., Bartilol, K., Musyoki, H., Waruiru, W., Ragi, A., and Bhattacharjee, P. (2022), Modelling the impact of hiv and hepatitis C virus prevention and treatment interventions among people who inject drugs in Kenya, AIDS, 36(15), 2191–2201.
|
-
[87]  | Elaiw, A., AlShamrani, N., Dahy, E., Abdellatif, A., and Raezah, A.A. (2023), Effect of macrophages and latent reservoirs on the dynamics of HTLV-I and HIV-1 coinfection, Mathematics, 11(3), 592.
|
-
[88]  | Akbarzadeh, V., Mumtaz, G.R., Awad, S.F., Weiss, H.A., and Abu-Raddad, L.J. (2016), HCV prevalence can predict hiv epidemic potential among people who inject drugs: mathematical modeling analysis, BMC Public Health, 16, 1–17.
|