Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Impacts of Hall and Ion Slip Currents with Cattaneo -- Christov Features on the Peristaltic Blood Flow of Sisko Micropolar Nanofluid inside an Annulus through a Porous Medium

Journal of Applied Nonlinear Dynamics 13(4) (2024) 735--760 | DOI:10.5890/JAND.2024.12.009

Yasmeen M. Mohamed, Nabil T. M. El-Dabe, Mohamed Y. Abou-Zeid, Doaa R. Mostapha, Mahmoud E. Oauf

Department of mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt

Download Full Text PDF

 

Abstract

The present analytical study exposed the impact of Cattaneo -- Christov heat and mass fluxes on the peristaltic blood influx. The impacts of Hall and ion slip currents are imposed. The Sisko micropolar nanofluid through porous midst is also presumed. The influences of heat generation absorption, thermal radiation, and chemical reaction are presupposed. The slip constraint for both velocity and temperature are postulated. The convective restrictions for nanofluid volume fraction and concentration are examined. The coupled differential systems of equations yield Soret and Dufour feature. The supposition of the long wavelength as well as low Reynolds number is applied to convert the system of partial differential equations into an unpretentious formula (ordinary differential ones). Over and above, the resultant analytical solutions of these equations are tackled essentially by employing both procedures of the conventional perturbation and the homotopy perturbation method (HPM). The diverse physical variables impact on the resultant allocations are calculated numerically and elucidated graphically through a group of graphs. It is recorded that the axial velocity dwindles with an escalating in the magnitudes of Hartman number. Meanwhile, it elevates with rising in Sisko parameter. The spin velocity decays with the elevating in the microrotation parameter. The enriching in heat relaxation causes a dwindling influence on the temperature. Further, escalating the nano Biot number causes a declination in nanoparticles volume fraction. This study is very helpful and has prosperous significant in diverse medical implementations as gold nanoparticles are utilized in the remedy of cancer tumor.

References

  1. [1]  Khan, A.U., Hussain, S.T., and Nadeem, S. (2019), Existence and stability of heat and fluid flow in the presence of nanoparticles along a curved surface by mean of dual nature solution, Applied Mathematics and Computation, 353, 66-81.
  2. [2]  Das, S. K., Yu, W., and Pradeep, T. (2008), Nanofluids: Science and Technology, John Wiley \& Sons, Inc.
  3. [3]  Choi, S.U.S. (1995), Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flow, ASME FED, 231, 99-105.
  4. [4]  Kennedy, L.C., Bickford, L.R., Lewinski, N.A., Coughlin, A.J., Hu, Y., Day, E.S., West, J.L., and Drezek, R.A. (2011), A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies, Small, 7, 169-183.
  5. [5]  Eldabe, N.T.M., Abou-zeid, M.Y., Abosaliem, A., Alana, A., and Hegazy, N. (2021), Homotopy perturbation approach for Ohmic dissipation and mixed convection effects on non-Newtonian nanofluid flow between two co-axial tubes with peristalsis, International Journal of Applied Electromagnetics and Mechanics, 67, 153-163.
  6. [6]  Eldabe, N.T.M., Rizkallah, R.R., Abou-zeid, M.Y., and Ayad, V.M. (2020), Thermal diffusion and diffusion thermo effects of Eyring‐Powell nanofluid flow with gyrotactic microorganisms through the boundary layer, Heat Transfer---Asian Research, 49(1), 383-405.
  7. [7]  Bhatti, M.M., Riaz, A., Zhang, L., Sadiq, M.S., and Ellahi, R. (2021), biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: An entropy analysis, Journal of Thermal Analysis and Calorimetry, 144(6), 2187-2202.
  8. [8]  Eldabe, N.T., Abou-zeid, M.Y., Mohamed, M.A., and Maged, M. (2021), Peristaltic flow of Herschel Bulkley nanofluid through a non-Darcy porous medium with heat transfer under slip condition, International Journal of Applied Electromagnetics and Mechanics, 66, 649-668.
  9. [9]  El-dabe, N.T.M., Shaaban, A., Abou-zeid, M.Y., and Ali, H.A. (2015), Magnetohydrodynamic non-Newtonian nanofluid flow over a stretching sheet through a non-Darcy porous medium with radiation and chemical reaction, Journal of Computational and Theoretical Nanoscience, 12(12), 5363-5371
  10. [10]  Eringen, A.C. (1966), Theory of micropolar fluids, Journal of Applied Mathematics and Mechanics, 16, 1-18.
  11. [11]  Eldabe, N.T.M., Abou-zeid, M.Y., Elshabouri, S.M., Salama, T.N., and Ismael, A.M. (2022), Ohmic and viscous dissipation effects on micropolar non-Newtonian nanofluid Al$_2$O$_3$ flow through a non-Darcy porous media, International Journal of Applied Electromagnetics and Mechanics, 68, 209-221.
  12. [12]  Eldabe, N.T.M., Moatimid, G.M., Mohamed, M.A.A., and Mohamed, Y.M. (2021), A couple stress of peristaltic motion of Sutterby micropolar nanofluid inside a symmetric channel with a strong magnetic field and Hall currents effect, Archive of Applied Mechanics, 91, 3987-4010.
  13. [13]  Mohamed, M.A. and Abou-zeid, M.Y. (2019), MHD peristaltic flow of micropolar Casson nanofluid through a porous medium between two co-axial tubes, Journal of Porous Media, 22, 1079-1093.
  14. [14]  Ismael, A., Eldabe, N.T., Abouzeid, M.Y., and Elshabouri, S. (2022), Thermal micropolar and couple stresses effects on peristaltic flow of biviscosity nanofluid through a porous medium, Scientific Rports, 12, 16180.
  15. [15]  Mohamed, Y.M., Eldabe, N.T., Abou-zeid, M.Y., Mostapha, D.R., and Oauf, M.E. (2023), Impacts of chemical reaction and electric field with Cattaneo - Christov theories on peristaltic transport of a hyperbolic micropolar nanofluid, Egyptian Journal of Chemistry, 66(7), 63-85.
  16. [16]  Ouaf, M., Abouzeid, M., and Ibrahim, M.G. (2023), Effects of both variable electrical conductivity and microstructural/multiple slips on MHD flow of micropolar nanofluid, Egyptian Journal of Chemistry, 66, 449-456.
  17. [17]  Das, S., Barman, B., Jana, R.N., and Makinde, O.D. (2021), Hall and ion slip currents' impact on electromagnetic blood flow conveying hybrid nanoparticles through an Endoscope with peristaltic waves, BioNanoScience, 11, 770-792.
  18. [18]  Abdelmoneim, M., Eldabe, N.T., Abouzeid, M.Y., and Ouaf, M.E. (2023), Both modified Darcy's law and couple stresses effects on electro-osmotic flow of non-Newtonian nanofluid with peristalsis, International Journal of Applied Electromagnetics and Mechanics, 72(3), 253-277.
  19. [19]  Abu-zeid, M.Y. and Ouaf, M.E. (2021), Hall currents effect on squeezing flow of non-Newtonian nanofluid through a porous medium between two parallel plates, Case Studies in Thermal Engineering, 28, 10362.
  20. [20]  Eldabe, N.T.M., Moatimid, G.M., Mohamed, M.A.A., and Mohamed, Y.M. (2020), Effects of Hall currents with heat and mass transfer on the peristaltic transport of a Casson fluid through a porous medium in a vertical circular cylinder, Thermal Science, 24(2B), 1067-1081.
  21. [21]  Abouzeid, M.Y. (2022), Chemical reaction and non-Darcian effects on MHD generalized Newtonian nanofluid motion, Egyptian Journal of Chemistry, 65(12), 647-655.
  22. [22]  Eldabe, N.T., Moatimid, G.M., Abouzeid, M.Y., ElShekhipy, A.A., and Abdallah, N.F. (2020), A semi analytical technique for MHD peristalsis of pseudoplastic nanofluid with temperature-dependent viscosity: Application in drug delivery system, Heat Transfer Asian Research, 49, 424-440.
  23. [23]  Elshehawey, E.F., Eldabe, N.T., Elbarbary, El.M.E., and Elgazery, N.S. (2011), Chebyshev finite difference method for the effects of Hall and ion-slip currents on magnetohydrodynamic flow with variable thermal conductivity, Canadian Journal of Physics, 82(9), 701-715.
  24. [24]  Mekheimer, K.S. and Abd elmaboud, Y. (2008), The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope, Physics Letters A, 372, 1657-1665.
  25. [25]  Eldabe, N.T., Rizkallah, R.R., Abou-zeid, M.Y., and Ayad, V.M. (2022), Effect of induced magnetic field on non-Newtonian nanofluid Al2O3 motion through boundary-layer with gyrotactic microorganisms, Therm. Science, 26(1B), 411-422.
  26. [26]  Ismael, A., Eldabe, N.T., Abouzeid, M.Y., and Elshabouri, S. (2022), Entropy generation and nanoparticles Cu O effects on MHD peristaltic transport of micropolar non-Newtonian fluid with velocity and temperature slip conditions, Egyptian Journal of Chemistry, 65, 715-722.
  27. [27]  Ellahi, R., Rahman, S.U., and Nadeem, S. (2014), Blood flow of nanofluid through an artery with composite stenosis and permeable walls, Applied Nanoscience, 4, 919-926.
  28. [28]  Nadeem, S., Ijaz, S., and Akbar, N.S. (2014), A theoretical study of Prandtl nanofluid in a rectangular duct through peristaltic transport, Applied Nanoscience, 4, 753-760.
  29. [29]  Srinivas, S. and Kothandapani, M. (2008), Peristaltic transport in an asymmetric channel with heat transfer-A note, International Communication in Heat and Mass Transfer, 35, 514-522.
  30. [30]  Eldabe, N.T. and Abou-Zeid, M.Y. (2010), The wall properties effect on peristaltic transport of Micropolar non-Newtonian fluid with heat and mass transfer, Mathematical Problems in Engineering, 2010, 1-40.
  31. [31]  Eldabe, N.T., El-Sayed, M.F., Ghaly, A.Y., and Sayed, H.M. (2007), Peristaltically induced transport of MHD biviscosity fluid in a non-uniform tube, Physica A, 383, 253-266.
  32. [32]  El-dabe, N.T.M. and Sallam, S.N. (2011), Non-Darcy Couette flow through a porous medium of magnetohydrodynamic viscoelastic fluid with heat and mass transfer, Canadian Journal of Physics, 83(12), 1243-1265.
  33. [33]  El-Dabe, N.T., Abou-Zeid, M.Y., and Ahmed, O.S. (2020), Motion of a thin film of a fourth grade nanofluid with heat transfer down a vertical cylinder: Homotopy perturbation method application, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 66, 101-113.
  34. [34]  El-dabe, N.T.M. and Mohamed, M.A.A. (2002), Heat and mass transfer in hydromagnetic flow of the non-Newtonian fluid with heat source over an accelerating surface through a porous medium, Chaos Solitons $\&$ Fractals, 13(4), 907-917.
  35. [35]  El-dabe, N.T.M., Abou-zeid, M.Y., and Younis, Y. (2017), Magnetohydrodynamic peristaltic flow of Jeffry nanofluid with heat transfer through a porous medium in a vertical tube, Applied Mathematics $\&$ Information Science, 11(4), 1097-1103.
  36. [36]  Ibrahim, M.G., Abdallah, N., and Abouzeid, M. (2022), Activation energy and chemical reaction effects on MHD Bingham nanofluid flow through a non-Darcy porous media, Egyptian Journal of Chemistry, 65, 137-144.
  37. [37]  Ibrahim, M.G. and Abouzeid, M. (2022), Influence of variable velocity slip condition and activation energy on MHD peristaltic flow of Prandtl nanofluid through a non-uniform channel, Scientific Reports, 12(1), 18747.
  38. [38]  Fourier, J.B. (1822), Theorie analytique, De La Chaleur Paris.
  39. [39]  Cattaneo, C. (1948), Sulla conduzione del calore, Atti del Seminario Matematico e Fisico dell'Universita di Modena e Reggio Emilia, 3, 89-101.
  40. [40]  Christov, C.I. (2009), On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction, Mechanics Research Communications, 36, 481-486.
  41. [41]  Eldabe, N.T.M., Abou-zeid, M.Y., Oauf, M.E., Mostapha, D.R., and Mohamed, Y.M. (2022), Cattaneo-Christov heat and mass fluxes effect on MHD peristaltic transport of Bingham $Al_{2} O_{3} $ nanofluid through a non-Darcy porous medium, International Journal of Applied Electromagnetics and Mechanics, 68(1), 59-84.
  42. [42]  Abou-zeid, M.Y. (2019), Implicit homotopy perturbation method for MHD non-Newtonian nanofluid flow with Cattaneo-Christov heat flux due to parallel rotating disks, Journal of Nanofluids, 8, 1648-1653.
  43. [43]  Mehmood, O.U., Qureshi, A.A., Yasmin, H., and Uddin, S. (2019), Thermo-mechanical analysis of non-Newtonian peristaltic mechanism: modified heat flux model, Physica A, 1-21, https://doi.org/10.1016/j.physa.2019.124014.
  44. [44]  Tong, Z.W., Khan, S.U., Vaidya, H., Rajashekhar, R., Sun, T.Ch., Khan, M.I., Prasad, K.V., Chinram, R., and Aly, A.A. (2021), Nonlinear thermal radiation and activation energy significances in slip flow of bioconvection of Oldroyd-B nanofluid with Cattaneo-Christov theories, Case Studies in Thermal Engineering, 26, 1-12.
  45. [45]  Ahmad, M.A., McCash, L.B., Shah, Z., and Nawaz, R. (2020), Cattaneo-Christov heat flux model for second grade nanofluid flow with Hall effect through entropy generation over stretchable rotating disk, Coatings, 10, 1-23.
  46. [46]  Nazir, U., Sohail, M., Hussam Alrabaiah, H., Selim, M.M., Thounthong, Ph., and Park, Ch. (2021), Inclusion of hybrid nanoparticles in hyperbolic tangent material to explore thermal transportation via finite element approach engaging Cattaneo-Christov heat flux, Plos One, 1-19. https://doi.org/10.1371/journal.pone.0256302.
  47. [47]  Sisko, A.W. (1958), The flow of lubricating greases, Journal of Industrial and Engineering Chemistry, 50, 1789-1792.
  48. [48]  Khan, M., Abbas, Q., and Duru, K. (2010), Magnetohydrodynamic flow of a Sisko fluid in annular pipe: A numerical study, International Journal for Numerical Methods in Fluids, 62, 1169-1180.
  49. [49]  Abuiyada, A., Eldabe, N.T., Abouzeid, M.Y., and Elshabouri, S. (2023), Influence of both Ohmic dissipation and activation energy on peristaltic transport of Jeffery nanofluid through a porous media, CFD Letters, 15, 65-85.
  50. [50]  Khan, M., Munawar, S., and Abbasbandy, S. (2010), Steady flow and heat transfer of a Sisko fluid in annular pipe, International Journal of Heat and Mass Transfer, 53, 1290-1297.
  51. [51]  Tretheway, D.C. and Meinhart, C.D. (2002), Apparent fluid slip at hydrophobic microchannel walls, Physics of Fluids, 14, 9-12.
  52. [52]  Hayat, T., Iqbal, R., Tanveer, A., and Alsaedi, A. (2016), Influence of convected conditions in radiative peristaltic flow of pseudoplastic nanofluid in a tapered asymmetric channel, Journal of Magnetism and Magnetic Materials, 408, 168-176.
  53. [53]  Maayah, B., Abu Arqub, O., Alnabulsi, S., and Alsulami, H. (2022), Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme, Chinese Journal of Physics, 80, 463-483.
  54. [54]  Abu Arqub, O. and Maayah, B. (2023), Adaptive the Dirichlet model of mobile/immobile advection/dispersion in a time-fractional sense with the reproducing kernel computational approach: Formulations and approximations, International Journal of Modern Physics B, 37(18), https://doi.org/10.1142/S0217979223501795.
  55. [55]  Badawi, H., Abu Arqub, O., and Shawagfeh, N. (2023), Stochastic integrodifferential models of fractional orders and Leffler nonsingular kernels: well-posedness theoretical results and Legendre Gauss spectral collocation approximations, Chaos, Solitons $\&$ Fractals, (10), 1-13, https://doi.org/10.1016/j.csfx.2023.10 0 091.
  56. [56]  Maayah, B., Moussaoui, A., Bushnaq, S., and Abu Arqub, O. (2022), The multistep Laplace optimized decomposition method for solving fractional-order coronavirus disease model (COVID-19) via the Caputo fractional approach, Demonstratio Mathematica, 55, 963-977.
  57. [57]  Eldabe, N.T., Abouzeid, M.Y., Mohamed, M.A.A., and Abd-Elmoneim, M.M. (2023), Peristaltic mixed convection slip flow of a Bingham nanofluid through a non-darcy porous medium in an inclined non-uniform duct with viscous dissipation and radiation, Journal of Applied Nonlinear Dynamics, 12, 231-243.
  58. [58]  Sayed, H.A. and Abouzeid, M.Y. (2023), Radially varying viscosity and entropy generation effect on the Newtonian nanofluid flow between two co-axial tubes with peristalsis, Scientific Reports, 13, 11013.
  59. [59]  Mohamed, Y.M., Eldabe, N.T., Abou-zeid, M.Y., Oauf, M.E., and Mostapha, D.R. (2023), Chemical reaction and thermal radiation via Cattaneo-Christov double diffusion (ccdd) effects on squeezing non-Netonian nanofluid flow between two - parallel plates, Egyptian Journal of Chemistry, 66(3), 209-231.
  60. [60]  Mohamed, Y.M., Eldabe, N.T., Abou-zeid, M.Y., Oauf, M.E., and Mostapha, D.R. (2022), Effects of thermal diffusion and diffusion thermo on a chemically reacting MHD peristaltic transport of Bingham plasticnanofluid, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 98(1), 1-17.
  61. [61]  El-dabe, N.T. (1986), Magnetohydrodynamic unsteady free convective flow through a porous medium bounded by an infinite vertical porous plate, Canadian Journal of Physics, 64(1), 84-89.
  62. [62]  Eldabe, N.T., Moatimid, G.M., Abouzeid, M.Y., ElShekhipy, A.A., and Abdallah, N.F. (2020), Instantaneous thermal-diffusion and diffusion-thermo effects on Carreau nanofluid flow over a stretching porous sheet, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 72, 142-157.
  63. [63]  Abou-zeid, M.Y. (2015), Homotopy perturbation method to gliding motion of bacteria on a layer of power-law nanoslime with heat transfer, Journal of Computational and Theoretical Nanoscience, 12, 3605-3614.
  64. [64]  Eldabe, N.T.M., Moatimid, G.M., Abou-zeid, M.Y., Elshekhipy, A.A., and Abdallah, N.F. (2021), Semi-analytical treatment of Hall current effect on peristaltic flow of Jeffery nanofluid, International Journal of Applied Electromagnetics and Mechanics, 7, 47-66.
  65. [65]  Ouaf, M.E., Abouzeid, M.Y., and Younis, Y.M. (2022), Entropy generation and chemical reaction effects on MHD non-Newtonian nanofluid flow in a sinusoidal channel, International Journal of Applied Electromagnetics and Mechanics, 69, 45-65.
  66. [66]  Eldabe, N.T.M., Abou-zeid, M.Y., Abosaliem, A., Alana, A., and Hegazy, N. (2021), Thermal diffusion and diffusion thermo effects on magnetohydrodynamics transport of non-Newtonian nanofluid through a porous media between two wavy co-axial tubes, Transactions on Plasma Science, 50, 1282-1290.
  67. [67]  Eldabe, N.T., Abou-zeid, M.Y., El-Kalaawy, O.H., Moawad, S.M., and Ahmed, O.S. (2021), Electromagnetic steady motion of Casson fluid with heat and mass transfer through porous medium past a shrinking surface, Thermal Science, 25, 257-265.
  68. [68]  Eldabe, N.T., Elshabouri, S., Elarabawy, H., Abouzeid, M.Y., and Abuiyada, A.J. (2022), Wall properties and Joule heating effects on MHD peristaltic transport of Bingham non-Newtonian nanofluid, International Journal of Applied Electromagnetics and Mechanics, 69, 87-106.