Journal of Applied Nonlinear Dynamics
Novel Lower Bounds on the Radius of Spatial Analyticity for the KdV Type Equations
Journal of Applied Nonlinear Dynamics 13(4) (2024) 619--630 | DOI:10.5890/JAND.2024.12.001
Aissa Boukarou$^1$, Kaddour Guerbati$^2$, Khaled Zennir$^{3,4}$, Aouatef Mansouri$^5$
$^1$ Dynamic Systems Laboratory, Department of Mathematics, University of Science and Technology Houari
Boumediene, Algiers 16111, Algeria
$^2$ Laboratoire de Math'ematiques et Sciences appliqu'ees Universit'e de Ghardaia, Alg'erie
$^3$ Department of Mathematics, College of Sciences and Arts, Qassim University, Ar Rass, Saudi Arabia
$^4$ Department of mathematics, Faculty of sciences, University 20 A^out 1955- Skikda, Algeria
$^5$ Universit'e Larbi Ben Mhidi, Oum El Bouaghi, Alg'erie
Download Full Text PDF
Abstract
In this article, using multi-linear estimate in Bourgain type spaces, we prove the local well-posedness of initial value problem associated with the equation $\partial_{t}w +\partial_{x}^{3}w +\eta(t) \mathcal{L}w+\partial_{x}(w)^{k} = 0,$ $ k=2, 4 $. The solution is established on the line for analytic initial data $u_{0}$ that can be extended as holomorphic functions in a strip around the x-axis. A procedure for constructing a global solution is proposed, which improve earlier results in [1].
References
-
[1]  | Carvajal, X. and Panthee, M. (2012), Well-posedness for kdv type equations, Electronic Journal of Differential Equations, 2012(40), 1-15.
|
-
[2]  | Boukarou, A., Zennir, K., Guerbati, K., and Georgiev, S.G.
(2021), Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity,
Rendiconti del Circolo Matematico di Palermo Series, 2(70), 349-364.
|
-
[3]  | Boukarou, A., Zennir, K., Guerbati, K., and Svetlin, G.G. (2020), Well-posedness and regularity of the fifth order Kadomtsev–Petviashvili I equation in the analytic Bourgain spaces, Annali Dell'universita'di Ferrara,
66(2), 255-272.
|
-
[4]  | Cohen, B.I., Krommes, J.A., Tang, W.M., and Rosenbluth, M.N. (1976), Non-linear saturation of the dissipative trapped-ion mode by mode coupling,
Nuclear Fusion, 16(6), 971.
|
-
[5]  | Grunrock, A. (2005), A bilinear Airy-estimate with application to gKdV-3, Differential and Integral Equations, 18(12), 1333-1339.
|
-
[6]  | Topper, J. and Kawahara, T. (1978), Approximate equations for long nonlinear waves on a viscous fluid, Physical society of Japan, 44(2), 663-666.
|
-
[7]  | Benney, D.J. (1996), Long waves on liquids films, Journal of Mathematical Physics, 45, 150-155.
|
-
[8]  | Molinet, L. and Ribaud, F. (2002), On the low regularity of the Korteweg-de Vries-Burgers equation, International Mathematics Research Notices, 37, 1979-2005.
|
-
[9]  | Alvarez, B. (2003), The Cauchy problem for a nonlocal perturbation of the KdV equation, Differential Integral Equations, 16(10), 1249-1280.
|
-
[10]  | Carvajal, X. and Scialom, M. (2005), On the well-posedness for the generalized Ostrovsky, Nonlinear Analysis: Theory, Methods $\&$ Applications,
62(7), 1277-1287.
|
-
[11]  | Ostrovsky, L.A., Stepanyants, Y.A., and Tsimring, L.Sh. (1984), Radiation instability in a stratified shear flow, International Journal of Non-Linear Mechanics, 19, 151-161.
|
-
[12]  | Selberg, S. and Tesfahun, A. (2015), On the radius of spatial analyticity for the 1d Dirac–Klein–Gordon equations, Journal of Differential Equations, 259(9), 4732-4744.
|
-
[13]  | Petronilho, G. and Silva, P.L.D. (2019), On the radius of spatial analyticity for the modified Kawahara equation on the line, Mathematische Nachrichten, 292(9), 2032-2047.
|
-
[14]  | Selberg, S. and Silva, D.O. (2016), Lower bounds on the radius of a spatial analyticity for the KdV equation, Annales Henri Poincare, 18, 1009-1023.
|
-
[15]  | Boukarou, A., Guerbati, K., and Zennir, Kh. (2020), Local well-posedness and time regularity for a fifth-order shallow water equations in analytic Gevrey–Bourgain spaces, Monatshefte für Mathematik, 193, 763-782.
|
-
[16]  | Boukarou, A., Guerbati, K., and Zennir, K. (2020), Local well-posedness and time regularity for a fifth-order shallow water equations in analytic Gevrey–Bourgain spaces, Monatshefte für Mathematik,
193(4), 763-782.
|
-
[17]  | Jerry, L.B., Grujic, Z., and Kalisch, H. (2005), Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation,
In Annales de l'IHP Analyse non linéaire, 22(6), 78-797.
|
-
[18]  | Foias, C. and Temam, R. (1989), Gevrey class regularity for the solutions of the Navier–Stokes equations, Journal of Functional Analysis, 87, 359-369.
|
-
[19]  | Katznelson, Y. (1976), An introduction to harmonic analysis, Dover Publications, New York.
|
-
[20]  | Kenig, C.E., Ponce, G., and Vega, L. (1993), The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Mathematical Journal, 71, 1-21.
|
-
[21]  | Selberg, S. and Tesfahun, A. (2017), On the radius of spatial analyticity for the quartic generalized KdV equation, Annales Henri Poincare, 18, 3553-3564
|