Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Novel Lower Bounds on the Radius of Spatial Analyticity for the KdV Type Equations

Journal of Applied Nonlinear Dynamics 13(4) (2024) 619--630 | DOI:10.5890/JAND.2024.12.001

Aissa Boukarou$^1$, Kaddour Guerbati$^2$, Khaled Zennir$^{3,4}$, Aouatef Mansouri$^5$

$^1$ Dynamic Systems Laboratory, Department of Mathematics, University of Science and Technology Houari Boumediene, Algiers 16111, Algeria

$^2$ Laboratoire de Math'ematiques et Sciences appliqu'ees Universit'e de Ghardaia, Alg'erie

$^3$ Department of Mathematics, College of Sciences and Arts, Qassim University, Ar Rass, Saudi Arabia

$^4$ Department of mathematics, Faculty of sciences, University 20 A^out 1955- Skikda, Algeria

$^5$ Universit'e Larbi Ben Mhidi, Oum El Bouaghi, Alg'erie

Download Full Text PDF

 

Abstract

In this article, using multi-linear estimate in Bourgain type spaces, we prove the local well-posedness of initial value problem associated with the equation $\partial_{t}w +\partial_{x}^{3}w +\eta(t) \mathcal{L}w+\partial_{x}(w)^{k} = 0,$ $ k=2, 4 $. The solution is established on the line for analytic initial data $u_{0}$ that can be extended as holomorphic functions in a strip around the x-axis. A procedure for constructing a global solution is proposed, which improve earlier results in [1].

References

  1. [1]  Carvajal, X. and Panthee, M. (2012), Well-posedness for kdv type equations, Electronic Journal of Differential Equations, 2012(40), 1-15.
  2. [2]  Boukarou, A., Zennir, K., Guerbati, K., and Georgiev, S.G. (2021), Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity, Rendiconti del Circolo Matematico di Palermo Series, 2(70), 349-364.
  3. [3]  Boukarou, A., Zennir, K., Guerbati, K., and Svetlin, G.G. (2020), Well-posedness and regularity of the fifth order Kadomtsev–Petviashvili I equation in the analytic Bourgain spaces, Annali Dell'universita'di Ferrara, 66(2), 255-272.
  4. [4]  Cohen, B.I., Krommes, J.A., Tang, W.M., and Rosenbluth, M.N. (1976), Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nuclear Fusion, 16(6), 971.
  5. [5]  Grunrock, A. (2005), A bilinear Airy-estimate with application to gKdV-3, Differential and Integral Equations, 18(12), 1333-1339.
  6. [6]  Topper, J. and Kawahara, T. (1978), Approximate equations for long nonlinear waves on a viscous fluid, Physical society of Japan, 44(2), 663-666.
  7. [7]  Benney, D.J. (1996), Long waves on liquids films, Journal of Mathematical Physics, 45, 150-155.
  8. [8]  Molinet, L. and Ribaud, F. (2002), On the low regularity of the Korteweg-de Vries-Burgers equation, International Mathematics Research Notices, 37, 1979-2005.
  9. [9]  Alvarez, B. (2003), The Cauchy problem for a nonlocal perturbation of the KdV equation, Differential Integral Equations, 16(10), 1249-1280.
  10. [10]  Carvajal, X. and Scialom, M. (2005), On the well-posedness for the generalized Ostrovsky, Nonlinear Analysis: Theory, Methods $\&$ Applications, 62(7), 1277-1287.
  11. [11]  Ostrovsky, L.A., Stepanyants, Y.A., and Tsimring, L.Sh. (1984), Radiation instability in a stratified shear flow, International Journal of Non-Linear Mechanics, 19, 151-161.
  12. [12]  Selberg, S. and Tesfahun, A. (2015), On the radius of spatial analyticity for the 1d Dirac–Klein–Gordon equations, Journal of Differential Equations, 259(9), 4732-4744.
  13. [13]  Petronilho, G. and Silva, P.L.D. (2019), On the radius of spatial analyticity for the modified Kawahara equation on the line, Mathematische Nachrichten, 292(9), 2032-2047.
  14. [14]  Selberg, S. and Silva, D.O. (2016), Lower bounds on the radius of a spatial analyticity for the KdV equation, Annales Henri Poincare, 18, 1009-1023.
  15. [15]  Boukarou, A., Guerbati, K., and Zennir, Kh. (2020), Local well-posedness and time regularity for a fifth-order shallow water equations in analytic Gevrey–Bourgain spaces, Monatshefte für Mathematik, 193, 763-782.
  16. [16]  Boukarou, A., Guerbati, K., and Zennir, K. (2020), Local well-posedness and time regularity for a fifth-order shallow water equations in analytic Gevrey–Bourgain spaces, Monatshefte für Mathematik, 193(4), 763-782.
  17. [17]  Jerry, L.B., Grujic, Z., and Kalisch, H. (2005), Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, In Annales de l'IHP Analyse non linéaire, 22(6), 78-797.
  18. [18]  Foias, C. and Temam, R. (1989), Gevrey class regularity for the solutions of the Navier–Stokes equations, Journal of Functional Analysis, 87, 359-369.
  19. [19]  Katznelson, Y. (1976), An introduction to harmonic analysis, Dover Publications, New York.
  20. [20]  Kenig, C.E., Ponce, G., and Vega, L. (1993), The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Mathematical Journal, 71, 1-21.
  21. [21]  Selberg, S. and Tesfahun, A. (2017), On the radius of spatial analyticity for the quartic generalized KdV equation, Annales Henri Poincare, 18, 3553-3564