Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Generation of Synchronous Unpredictable Oscillations by Coupled Hopfield Neural Networks

Journal of Applied Nonlinear Dynamics 13(3) (2024) 591--602 | DOI:10.5890/JAND.2024.09.014

Mehmet Onur Fen$^{1}$, Fatma Tokmak Fen$^{2}$

$^{1}$ Department of Mathematics, TED University, 06420 Ankara, Turkey

$^{2}$ Department of Mathematics, Gazi University, 06560 Ankara, Turkey

Download Full Text PDF

 

Abstract

A criterion based on generalized synchronization is provided for the extension of unpredictable oscillations among coupled Hopfield neural networks (HNNs). It is shown that if the drive network possesses an unpredictable oscillation, then the same is true for the response network provided that they are synchronized in the generalized sense. Extension of unpredictability in coupled 4D HNNs is exemplified with simulations. The auxiliary system approach and conditional Lyapunov exponents are utilized to demonstrate the presence of synchronization.

References

  1. [1]  Poincar{e}, H. (1899), Les Methodes Nouvelles de la Mecanique Celeste, Vol. I, II, III, Paris.
  2. [2]  Lorenz, E.N. (1963), Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 130-141.
  3. [3]  Wiggins, S. (1988), Global Bifurcations and Chaos, Springer: New York.
  4. [4]  Li, T.Y. and Yorke, J.A. (1975), Period three implies chaos, American Mathematical Monthly, 82, 985-992.
  5. [5]  Devaney, R. (1987), An Introduction to Chaotic Dynamical Systems, Addison-Wesley: United States of America.
  6. [6]  Akhmet, M.U. and Fen, M.O. (2015), Attraction of Li-Yorke chaos by retarded SICNNs, Neurocomputing, 147, 330-342.
  7. [7]  Fen, M.O. and Tokmak Fen, F. (2017), SICNNs with Li-Yorke chaotic outputs on a time scale, Neurocomputing, 237, 158-165.
  8. [8]  Akhmet, M. and Fen, M.O. (2016), Unpredictable points and chaos, Communications in Nonlinear Science and Numerical Simulation, 40, 1-5.
  9. [9]  Akhmet, M. and Fen, M.O. (2017), Existence of unpredictable solutions and chaos, Turkish Journal of Mathematics, 41, 254-266.
  10. [10]  Akhmet, M. and Fen, M.O. (2017), Poincar{e} chaos and unpredictable functions, Communications in Nonlinear Science and Numerical Simulation, 48, 85-94.
  11. [11]  Akhmet, M. and Fen, M.O. (2018), Non-autonomous equations with unpredictable solutions, Communications in Nonlinear Science and Numerical Simulation, 59, 657-670.
  12. [12]  Akhmet, M., Fen, M.O., and Tola, A. (2023), A numerical analysis of Poincar{e} chaos, Discontinuity, Nonlinearity, and Complexity, 12, 183-195.
  13. [13]  Akhmet, M., Fen, M.O., and Tola, A. (2022), Strange non-chaotic attractors with unpredictable trajectories, Journal of Vibration Testing and System Dynamics, 6, 317-327.
  14. [14]  Fen, M.O. and Tokmak Fen, F. (2021), Unpredictable oscillations of SICNNs with delay, Neurocomputing, 464, 119-129.
  15. [15]  Fujisaka, H. and Yamada, T. (1983), Stability theory of synchronized motion in coupled-oscillator systems, Progress of Theoretical Physics, 69, 32-47.
  16. [16]  Afraimovich, V.S., Verichev, N.N., and Rabinovich, M.I. (1986), Stochastic synchronization of oscillation in dissipative systems, Radiophysics and Quantum Electronics, 29, 795-803.
  17. [17]  Pecora, L.M. and Carroll, T.L. (1990), Synchronization in chaotic systems, Physical Review Letters, 64, 821-825.
  18. [18]  Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., and Abarbanel, H.D.I. (1995), Generalized synchronization of chaos in directionally coupled chaotic systems, Physical Review E, 51, 980-994.
  19. [19]  Gonz{a}les-Miranda, J.M. (2004), Synchronization and Control of Chaos, Imperial College Press: London.
  20. [20]  Kocarev, L. and Parlitz, U. (1996), Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Physical Review Letters, 76, 1816-1819.
  21. [21]  Abarbanel, H.D.I., Rulkov, N.F., and Sushchik, M.M. (1996), Generalized synchronization of chaos: the auxiliary system approach, Physical Review E, 53, 4528-4535.
  22. [22]  Akhmet, M., Aru\u{g}aslan \c{C}in\c{c}in, D., Tleubergenova, M., and Nugayeva, Z. (2021), Unpredictable oscillations for Hopfield-type neural networks with delayed and advanced arguments, Mathematics, 9, 571.
  23. [23]  Tokmak Fen, F., Fen, M.O., and Akhmet, M. (2023), A novel criterion for unpredictable motions, Filomat, 37, 6151-6160.
  24. [24]  Babloyantz, A. and Lourenco, C. (1996), Brain chaos and computation, International Journal of Neural Systems, 7, 461-471.
  25. [25]  Korn, H. and Faure, P. (2003), Is there chaos in the brain? II. Experimental evidence and related models, Comptes Rendus Biologies, 326, 787-840.
  26. [26]  Zeng, X., Hui, Q., Haddad, W.M., Hayakawa, T., and Bailey, J.M. (2014), Synchronization of biological neural network systems with stochastic perturbations and time delays, Journal of the Franklin Institute, 351, 1205-1225.
  27. [27]  Gray, C.M. (1994), Synchronous oscillations in neural systems: Mechanisms and functions, Journal of Computational Neuroscience, 1, 11-38.
  28. [28]  Erra, R.G., Velazquez, J.L.P., and Rosenblum, M. (2017), Neural synchronization from the perspective of non-linear dynamics, Frontiers in Computational Neuroscience, Doi: 10.3389/fncom.2017.00098.
  29. [29]  Qiu, S., Sun, K., and Di, Z. (2022), Long-range connections are crucial for synchronization transition in a computational model of Drosophila brain dynamics, Scientific Reports, 12, 20104.
  30. [30]  Hopfield, J.J. (1984), Neurons with graded response have collective computational properties like those of two-state neurons, Proceedings of the National Academy of Sciences, 81, 3088-3092.
  31. [31]  Rozier, K. and Bondarenko, V.E. (2022), Synchronization, multiresonance phenomena, and discrete oscillation periods in a Hopfield neural network with two time delays, International Journal of Bifurcation and Chaos, 32, 2250066.
  32. [32]  Paik, J.K. and Katsaggelos, A.K. (1992), Image restoration using a modified Hopfield network, IEEE Transactions on Image Processing, 1, 49-63.
  33. [33]  Njitacke, Z.T., Isaac, S.D., Nestor, T., and Kengne, J. (2021), Window of multistability and its control in a simple 3D Hopfield neural network: application to biomedical image encryption, Neural Computing and Applications, 33, 6733-6752.
  34. [34]  Nasrabadi, N.M. and Li, W. (1991), Object recognition by a Hopfield neural network, IEEE Transactions on Systems, Man, and Cybernetics, 21, 1523-1535.
  35. [35]  Kechriotis, G.I. and Manolakos, E.S. (1996), Hopfield neural network implementation of the optimal CDMA multiuser detector, IEEE Transactions on Neural Networks, 7, 131-141.
  36. [36]  Tavares, C.A., Santos, T.M.R., Lemes, N.H.T., dos Santos, J.P.C., Ferreira, J.C., and Braga, J.P. (2021), Solving ill-posed problems faster using fractional-order Hopfield neural network, Journal of Computational and Applied Mathematics, 381, 112984.
  37. [37]  He, R. and Vaidya, P.G.(1992), Analysis and synthesis of synchronous periodic and chaotic systems, Physical Review A, 46, 7387-7392.
  38. [38]  Peng, J., Xu, Z.-B., and Qiao, H. (2005), A critical analysis on global convergence of Hopfield-type neural networks, IEEE Transactions on Circuits and Systems-I: Regular Papers, 52, 804-814.
  39. [39]  Mathias, A.C. and Rech, P.C. (2012), Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions, Neural Networks, 34, 42-45.
  40. [40]  Li, J., Liu, F., Guan, Z.-H., and Li, T. (2013), A new chaotic Hopfield neural network and its synthesis via parameter switchings, Neurocomputing, 117, 33-39.
  41. [41]  Njitacke, Z.T., Kengne, J., and Fotsin, H.B. (2020), Coexistence of multistable states and bursting oscillations in a 4D Hopfield neural network, Circuits, Systems, and Signal Processing, 39, 3424-3444.
  42. [42]  Bao, B., Qian, H., Wang, J., Xu, Q., Chen, M., Wu, H., and Yu, Y. (2017), Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network, Nonlinear Dynamics, 90, 2359-2369.
  43. [43]  Eroglu, D., Lamb, J.S.W., and Pereira, T. (2017), Synchronisation of chaos and its applications, Contemporary Physics, 58, 207-243.
  44. [44]  Hale, J. and Ko\c{c}ak, H. (1991), Dynamics and Bifurcations, Springer-Verlag: New York.
  45. [45]  Li, Q, Yang, X.-S., and Yang, F. (2005), Hyperchaos in Hopfield-type neural networks, Neurocomputing, 67, 275-280.
  46. [46]  Chen, C., Min, F., Zhang, Y., and Bao, B. (2023), ReLU-type Hopfield neural network with analog hardware implementation, Chaos, Solitons and Fractals, 167, 113068.
  47. [47]  Chen, C., Min, F., Zhang, Y., and Bao, B. (2021), Memristive electromagnetic induction effects on Hopfield neural network, Nonlinear Dynamics, 106, 2559-2576.
  48. [48]  Min, F., Cheng, Y., Lu, L., and Li, X. (2021), Extreme multistability and antimonotonicity in a Shinriki oscillator with two flux-controlled memristors, International Journal of Bifurcation and Chaos, 31, 2150167.
  49. [49]  Min, F. and Ma, H. (2020), The mechanism of switching combination synchronization for three distinct nonautonomous systems under sinusoidal constraints, Nonlinear Dynamics, 100, 475-492.
  50. [50]  Fen, M.O. and Tokmak Fen, F. (2019), Homoclinical structure of retarded SICNNs with rectangular input currents, Neural Processing Letters, 49, 521-538.