Journal of Applied Nonlinear Dynamics
Conformable Impulsive Delay Differential Equations
Journal of Applied Nonlinear Dynamics 13(1) (2024) 177--189 | DOI:10.5890/JAND.2024.03.012
Madhuri Sunkavilli, G.V.S.R. Deekshitulu
Department of Mathematics, UCEK, JNTUK, Kakinada, A.P., India
Download Full Text PDF
Abstract
References
-
[1]  | Kilbas, A.A, Srivastava, M.H. and Trujillo, J.J. (2006), Theory and applications of fractional differential equations, 204, elsevier.
|
-
[2]  | Miller, K.S. and Ross B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York.
|
-
[3]  | Podlubny I. (1999), Fractional Differential Equations, Academic Press, San Diego.
|
-
[4]  | Khan, Z.A., Ahmad, I., and Shah, K. (2021), Applications of fixed point theory to investigate a system of fractional order differential equations, Journal of Function Spaces, 2021, Article ID 1399764.
|
-
[5]  | Khalil, R., Al Horani, M., Yousef, A., and Sababheh, M. (2014), A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70.
|
-
[6]  | Ali, A., Shah, K., Abdeljawad, T., Mahariq, I., and Rashdan, M. (2021), Mathematical analysis of nonlinear integral boundary value problemma of proportional delay implicit fractional differential equations with impulsive conditions, Bound Value Problemmas, 2021(7), 1-27.
|
-
[7]  | Iyiola, O.S. and Nwaeze, E.R. (2016), Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progress in Fractional Differentiation and Applications, 2(2), 115-122.
|
-
[8]  | Li, M., Wang, J., and O'Regan, D. (2019), Existence and Ulam's stability for conformable fractional differential equations with constant coefficients, Bulletin of the Malaysian Mathematical Sciences Society, 42(4), 1791-1812.
|
-
[9]  | Tariboon, J. and Ntouyas, S.K. (2016), Oscillation of impulsive conformable fractional differential equations, Open Mathematics, 14(1), 497-508.
|
-
[10]  | Bainov, D.D. and Dishliev, A.B. (1990), Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population, Applied Mathematics and Computation, 39(1), 37-48.
|
-
[11]  | Choisy, M., Guégan, J.F., and Rohani, P. (2006), Dynamics of infectious diseases and pulse vaccination: teasing apart the embedded resonance effects, Physica D: Nonlinear Phenomena, 223(1), 26-35.
|
-
[12]  | d'Onofrio, A. (2005), On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Applied Mathematics Letters, 18(7), 729-732.
|
-
[13]  | Bainov, D.D. and Simeonov, P.S. (1993), Impulsive Differential Equations: Periodic Solutions and Applications, 66, CRC Press.
|
-
[14]  | Benchohra, M., Henderson, J., and Ntouyas, S.K. (2006), Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, New York, 2.
|
-
[15]  | Khan, Z. A., Gul, R., and Shah, K. (2021), On impulsive boundary value problemma with Riemann-Liouville fractional order derivative, Journal of Function Spaces, 2021, 1-11.
|
-
[16]  | Shah, K., Ahmad, I., Nieto, J.J., Rahman, G.U., and Abdeljawad, T. (2022), Qualitative investigation of nonlinear fractional coupled pantograph impulsive differential equations, Qualitative Theory of Dynamical Systems, 21(131), 131.
|
-
[17]  | You, Z. and Wang, J. (2018), Stability of impulsive delay differential equations, Journal of Applied Mathematics and Computing, 56(1), 253-268.
|
-
[18]  | Mahmudov, N.I. and Aydın, M. (2021), Representation of solutions of nonhomogeneous conformable fractional delay differential equations, Chaos, Solitons $\&$ Fractals, 150, 111190.
|
-
[19]  | Abdelhakim, A.A. and Machado, J.A.T. (2019), A critical analysis of the conformable derivative, Nonlinear Dynamics, 95(4), 3063-3073.
|
-
[20]  | Abdeljawad, T. (2015), On conformable fractional calculus, Journal of computational and Applied Mathematics, 279, 57-66.
|
-
[21]  | Xiao, G. and Wang, J. (2021), Representation of solutions of linear conformable delay differential equations, Applied Mathematics Letters, 117, 107088.
|
-
[22]  | Smart, D.R. (1980), Fixed Point Theorems, Cambridge University Press, Cambridge, 66.
|