Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Complex Dynamics in a Delayed Spatio-Temporal Model of Virus Infection and Immune Response

Journal of Applied Nonlinear Dynamics 13(1) (2024) 97--128 | DOI:10.5890/JAND.2024.03.008

Fatiha Najm, Radouane Yafia

Department of Mathematics Faculty of Sciences, Ibn Tofail University, Campus Universitaire B.P. 133, Kénitra, Morocco

Download Full Text PDF

 

Abstract

In this paper, we study a delayed spatio-temporal mathematical model which modeling the spreading of viral infection in the tissues and the activation of virus-specific T lymphocytes with a new explicit virus load function ``bi-phasic and tri-phasic". The model is given in reaction diffusion systems with two delays which represent the local interaction and the propagation of the virus in tissues. The reduced and layer subsystems are studied and we establish that the slow manifold is an attracting one. We prove that the diffusion has no effect on the dynamics of the system, but time delays can modify the dynamics of the system with/without diffusion. Numerical simulations are carried out to illustrate such situations.

References

  1. [1]  Sun, L., Wang, X., Saredy, J., Yuan, Z., Yang, X., and Wang, H. (2020), Innate-adaptive immunity interplay and redox regulation in immune response, Redox Biology, 37, 101759.
  2. [2]  Wodarz, D. (2007), Killer Cell Dynamics, Springer: New York.
  3. [3]  Abbas, A. and Lichtman, A. (2009), Basic Immunology: Functions and Disorders of the Immune System, Elsevier: Philadelphia.
  4. [4]  Bocharov, G., Volpert, V., Ludewig, B., and Meyerhans, A. (2018), Mathematical Immunology of Virus Infections, Springer Cham.
  5. [5]  Bocharov, G., Argilaguet, J., and Meyerhans, A. (2015), Understanding experimental LCMV infection of mice: The role of mathematical models, Advances in Computational Immunology, 2015, 739706, 10 pages.
  6. [6] To, K.K., Tsang, O.T., Leung, W.S., Tam, A., Wu, T.C., Lung, D.C., Yip, C.C., Cai, J.P., Chan, J.M., Chik, T.S., Lau, D.P., Choi, C.Y., Chen, L.L., Chan, W.M., Chan, K.H., Ip, J.D., Ng, A.C., Poon, R.W., Luo, C.T., Cheng, V.C., Chan, J.F., Hung, I.F., Chen, Z., Chen, H., and Yuen, K.Y. (2020), Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet Infectious Diseases, 20(5), 565-574.
  7. [7]  Bernauerova, V., Smith, A.M., Smith, A.P., and Moquin, D.J. (2018), Influenza virus infection model with density dependence supports biphasic viral decay, Frontiers in Microbiology, 9, 1–10.
  8. [8] Néant, N., Lingas, G., Le Hingrat, Q., Ghosn, J., Engelmann, L., Lepiller, Q., Gaymard, A., Ferré, V., Hartard, C., and Plantier, J.C. (2021), Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort, Proceedings of the National Academy of Sciences USA, 118(8), e2017962118.
  9. [9]  Contreras, C., Newby, J.M., and Hillen, T. (2021), Personalized virus load curves for acute viral infections, Viruses, 13, 1815.
  10. [10]  Bocharov, G. , Meyerhans, A., Bessonov, N., Trofimchuk, S., and Volpert, V. (2019), Modelling the dynamics of virus infection and immune response, The International Journal of Parallel, Emergent and Distributed Systems, 34(4), 341-355.
  11. [11]  Zitzmann, C. and Kaderali, L. (2018), Mathematical analysis of viral replication dynamics and antiviral treatment strategies: From basic models to age-based multi-scale modeling. Frontiers in Microbiology, 9, 1546.
  12. [12]  Kosiuk, I. (2012), Relaxation oscillations in slow-fast systems beyond the standard form, Dissertation zur Erlangung des akademischen Grades Doctor Rerum Naturalium (Dr.rer.nat.).
  13. [13] Zhang, S., Li, C., Zheng, J., Wang, X., Zeng, Z., and Peng, X. (2022), Generating Any Number of Initial Offset-Boosted Coexisting Chua’s Double-Scroll Attractors via Piecewise-Nonlinear Memristor, IEEE Transactions on Industrial Electronics, 69(7), 7202-7212.
  14. [14] Cooke, K.L. and Grossman, Z. (1982), Discrete delay, distributed delay and stability switches, Journal of Mathematical Analysis and Applications, 86, 592-627.
  15. [15] Ortiz, G.M., Hu, J., Goldwitz, J.A., Chandwani, R., Larsson, M., Bhardwaj, N., Bonhoeffer, S., Ramratnam, B., Zhang, l., Markowitz, M.M., and Nixon, D.F. (2002), Residual viral replication during antiretroviral therapy boosts human immunodeficiency virus type 1-specific CD8+ T-cell responses in subjects treated early after infection, Journal of Virology, 76, 411–415.