Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Dynamic Analysis and Adaptive Synchronization of a New Chaotic System

Journal of Applied Nonlinear Dynamics 12(4) (2023) 799--813 | DOI:10.5890/JAND.2023.12.012

Rami Amira, Fareh Hannachi

Laboratory of Mathematics, Informatics and Systems (LAMIS), Echahid Cheikh Larbi Tebessi University-

Tebessa, Algeria

Echahid Cheikh Larbi Tebessi University - Tebessa, Algeria

Download Full Text PDF

 

Abstract

This research paper studies a new chaotic system modified from Lorenz system. Firstly, the stability of the fixed points are studied. then, the dynamics of the novel system are investigated using bifurcations diagrams, Lyapunov exponents, 0-1 test, as well as Poincare sections. Furthermore, we use the three previously mentioned methods and see how our system exhibit a chaotic behavior from doubling of period. In addition to that, comparison of our proposed system with 30 other systems are implemented in order to see their advantage in secure communication using Kaplan-York dimension. In the second part of this paper, we implement an identical synchronization in less than $0.4$ seconds via an adaptive control law. Moreover, any results we get analytically will be checked by Matlab simulation.

References

  1. [1]  Savi, M.A., Pacheco, P.M., and Braga, A.M. (2002), Chaos in a shape memory two-bar truss, International Journal of Non-Linear Mechanics, 37(8), 1387-1395.
  2. [2]  Amigó, J.M., Szczepanski, J., and Kocarev, L. (2005), A chaos-based approach to the design of cryptographically secure substitutions, Physics Letters A, 343(1-3), 55-60.
  3. [3]  Wang, Y., Wong, K.W., Liao, X., and Chen, G. (2011), A new chaos-based fast image encryption algorithm, Applied soft computing, 11(1), 514-522.
  4. [4]  Benkouider, K., Halimi, M., and Bouden, T. (2019), Secure communication scheme using chaotic time-varying delayed system, International Journal of Computer Applications in Technology, 60(2), 175-182.
  5. [5]  Wishon, M.J., Li, N., Choi, D., Citrin, D.S., and Locquet, A. (2018), Chaotic laser voltage: An electronic entropy source, Applied Physics Letters, 112(26), 261101.
  6. [6]  Vaidyanathan, S., Sambas, A., Mamat, M., and Sanjaya, M. (2017), A new three-dimensional chaotic system with a hidden attractor, circuit design and application in wireless mobile robot, Archives of Control Sciences, 27(4).
  7. [7]  Suárez, I. (1999), Mastering chaos in ecology, Ecological Modelling, 117(2-3), 305-314.
  8. [8]  Asano, T. and Yokoo, M. (2019), Chaotic dynamics of a piecewise linear model of credit cycles, Journal of Mathematical Economics, 80, 9-21.
  9. [9]  Nagy, P. and Tasnádi, P. (2019), Visualization of chaotic attractors in 3D as motivating tool for introductory physics course, In Journal of Physics: Conference Series, (Vol. 1286, No. 1, p. 012028). IOP Publishing.
  10. [10]  De la Fuente, I.M., Martínez, L., and Veguillas, J. (1996), Intermittency route to chaos in a biochemical system, Biosystems, 39(2), 87-92.
  11. [11]  Li, Y.N., Chen, L., Cai, Z.S., and Zhao, X.Z. (2003), Study on chaos synchronization in the Belousov–Zhabotinsky chemical system,Chaos, Solitons and Fractals, 17(4), 699-707.
  12. [12]  Lorenz, E.N. (1963), Deterministic nonperiodic flow,Journal of atmospheric sciences, 20(2), 130-141.
  13. [13]  Rössler, O.E. (1976), An equation for continuous chaos, Physics Letters A, 57(5), 397-398.
  14. [14]  Chua, L.O., Komuro, M., and Matsumoto, T. (1986), The double scroll family, IEEE Transactions on Circuits and Systems, CAS-33, 11, 1073, 1118.
  15. [15]  Hannachi, F. (2019), Analysis, dynamics and adaptive control synchronization of a novel chaotic 3-D system, SN Applied Sciences, 1(2), 1-10.
  16. [16]  Khajanchi, S. (2020), Chaotic dynamics of a delayed tumor–immune interaction model, International Journal of Biomathematics, 13(02), 2050009.
  17. [17]  Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. (1985), Determining Lyapunov exponents from a time series, Physica D: nonlinear phenomena, 16(3), 285-317.
  18. [18]  Gottwald, G.A. and Melbourne, I. (2009), On the validity of the 0–1 test for chaos, Nonlinearity, 22(6), 1367.
  19. [19]  Frederickson, P., Kaplan, J.L., Yorke, E.D., and Yorke, J.A. (1983), The Liapunov dimension of strange attractors, Journal of Differential Equations, 49(2), 185-207.
  20. [20]  Chen, G. and Ueta, T. (1999), Yet another chaotic attractor, International Journal of Bifurcation and chaos, 9(07), 1465-1466.
  21. [21]  Chen, Z., Yang, Y., and Yuan, Z. (2008), A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system, Chaos, Solitons and Fractals, 38(4), 1187-1196.
  22. [22]  Li, D. (2008), A three-scroll chaotic attractor, Physics Letters A, 372(4), 387-393.
  23. [23]  Zhou, W., Xu, Y., Lu, H., and Pan, L. (2008), On dynamics analysis of a new chaotic attractor, Physics Letters A, 372(36), 5773-5777.
  24. [24]  Lü, J., Chen, G., Cheng, D., and Celikovsky, S. (2002), Bridge the gap between the Lorenz system and the Chen system, International Journal of Bifurcation and Chaos, 12(12), 2917-2926.
  25. [25]  Sambas, A., Vaidyanathan, S., Zhang, S., Putra, W.T., Mamat, M., and Mohamed, M.A. (2019), Multistability in a novel chaotic system with perpendicular lines of equilibrium: analysis, adaptive synchronization and circuit design, Engineering Letters, 27(4).
  26. [26]  Kapitaniak, T., Mohammadi, S.A., Mekhilef, S., Alsaadi, F.E., Hayat, T., and Pham, V.T. (2018), A new chaotic system with stable equilibrium: Entropy analysis, parameter estimation, and circuit design, Entropy, 20(9), 670.
  27. [27]  Tigan, G. and Opriş, D. (2008), Analysis of a 3D chaotic system, Chaos, Solitons and Fractals, 36(5), 1315-1319.
  28. [28]  Wang, G., Zhang, X., Zheng, Y., and Li, Y. (2006), A new modified hyperchaotic Lü system, Physica A: Statistical Mechanics and its Applications, 371(2), 260-272.
  29. [29]  Liu, C., Liu, T., Liu, L., and Liu, K. (2004), A new chaotic attractor, Chaos, Solitons and Fractals, 22(5), 1031-1038.
  30. [30]  Li, X.F., Chu, Y.D., Zhang, J.G., and Chang, Y.X. (2009), Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor, Chaos, Solitons and Fractals, 41(5), 2360-2370.
  31. [31]  Pan, L., Zhou, W., Fang, J., and Li, D. (2010), A new three-scroll unified chaotic system coined, International Journal of Nonlinear Science, 10(4), 462-474.
  32. [32]  Wei, Z. (2011), Dynamical behaviors of a chaotic system with no equilibria, Physics Letters A, 376(2), 102-108.
  33. [33]  Xu, G., Shekofteh, Y., Akgül, A., Li, C., and Panahi, S. (2018), A new chaotic system with a self-excited attractor: entropy measurement, signal encryption, and parameter estimation, Entropy, 20(2), 86.
  34. [34]  Yang, Q. and Qiao, X. (2019), Constructing a new 3D chaotic system with any number of equilibria, International Journal of Bifurcation and Chaos, 29(05), 1950060.
  35. [35] Lassoued, A., Boubaker, O., Dhifaoui, R., and Jafari, S. (2019), Experimental observations and circuit realization of a jerk chaotic system with piecewise nonlinear function, In Recent advances in chaotic systems and synchronization, (pp. 3-21). Academic Press.
  36. [36]  Li, X. and Ou, Q. (2011), Dynamical properties and simulation of a new Lorenz-like chaotic system, Nonlinear Dynamics, 65(3), 255-270.
  37. [37]  Kim, D. and Chang, P.H. (2013), A new butterfly-shaped chaotic attractor, Results in physics, 3, 14-19.
  38. [38]  Abooee, A., Yaghini-Bonabi, H.A., and Jahed-Motlagh, M.R. (2013), Analysis and circuitry realization of a novel three-dimensional chaotic system, Communications in Nonlinear Science and Numerical Simulation, 18(5), 1235-1245.
  39. [39]  Qiao, Z. and Li, X. (2014), Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system, Mathematical and Computer Modelling of Dynamical Systems, 20(3), 264-283.
  40. [40]  Deng, K., Li, J., and Yu, S. (2014), Dynamics analysis and synchronization of a new chaotic attractor, Optik, 125(13), 3071-3075.
  41. [41]  Gholizadeh, A., Nik, H.S., and Jajarmi, A. (2015), Analysis and control of a three-dimensional autonomous chaotic system, Applied Mathematics $\&$ Information Sciences, 9, 739-747.
  42. [42]  Wu, X., He, Y., Yu, W., and Yin, B. (2015), A new chaotic attractor and its synchronization implementation, Circuits, Systems, and Signal Processing, 34(6), 1747-1768.
  43. [43] Lai, Q., Akgul, A., Varan, M., Kengne, J., and Erguzel, A.T. (2018), Dynamic analysis and synchronization control of an unusual chaotic system with exponential term and coexisting attractors, Chinese Journal of Physics, 56(6), 2837-2851.
  44. [44]  Su, K. (2015), Dynamic analysis of a chaotic system, Optik, 126(24), 4880-4886.
  45. [45] Volos, C., Akgul, A., Pham, V.T., Stouboulos, I., and Kyprianidis, I. (2017), A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme, Nonlinear Dynamics, 89(2), 1047-1061.
  46. [46] Zhang, M. and Han, Q. (2016), Dynamic analysis of an autonomous chaotic system with cubic nonlinearity, Optik, 127(10), 4315-4319.
  47. [47]  Gholamin, P. and Sheikhani, A.R. (2017), A new three-dimensional chaotic system: dynamical properties and simulation, Chinese journal of physics, 55(4), 1300-1309.
  48. [48]  Vaidyanathan, S. and Rajagopal, K. (2016), Analysis, control, synchronization and LabVIEW implementation of a seven-term novel chaotic system, International Journal of Control Theory and Applications, 9(1), 151-174.
  49. [49]  Hahn, W. (1967), Stability of Motion, Springer. New York, USA.