Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Fractal Escape Basins for Magnetic Field Lines in Fusion Plasma Devices

Journal of Applied Nonlinear Dynamics 12(4) (2023) 723--738 | DOI:10.5890/JAND.2023.12.007

Amanda C. Mathias$^1$, Leonardo C. de Souza$^1$, Adriane R. Schelin$^2$, Iber\^e L. Caldas$^3$, \\ Ricardo L. Viana$^{1,3}$

$^1$ Departamento de F'isica, Universidade Federal do Paran'a, 81531-990, Curitiba, Paran'a, Brazil

$^2$ Departamento de F'isica, Universidade de Bras'ilia, Bras'ilia, DF, Brazil

$^3$ Instituto de F'isica, Universidade de S~ao Paulo, 05508-090, S~ao Paulo, S~ao Paulo, Brazil

Download Full Text PDF

 

Abstract

Plasma confinement in fusion devices like Tokamaks depends on the existence of closed magnetic field lines with toroidal geometry. The magnetic field line structure in toroidal plasma devices is a Hamiltonian system, where the role of time is played by an ignorable coordinate. Nonsymmetrical perturbations lead to a nonintegrable hamiltonian system that can exhibit area-filling chaotic orbits. If exits are suitably positioned on a chaotic magnetic field line region, the Hamiltonian system becomes open and one is interested to know the corresponding escape basins, i.e., the sets of initial conditions for which the corresponding field lines escape through a given exit. From general mathematical arguments, it can be shown that these escape basins are fractal. In this paper, we investigate quantitatively fractal escape basins in the magnetic field line structure in Tokamaks described by an area-preserving map proposed by Balescu et al, using the uncertainty dimension to characterize the fractal structure of the magnetic field lines. We also use the concept of basin entropy in order to quantify the final state uncertainty, a relevant issue that arises when fractal basins are involved.

References

  1. [1]  Horton, W. and Benkadda, S. (2015), ITER Physics, Singapore: World Scientific.
  2. [2]  IAEA (2002), ITER Technical Basis, ITER EDA Documentation Series No. 24. Vienna: International Atomic Energy Agency.
  3. [3]  Post, D.E. and Behrisch, R. (2013), Physics of Plasma-Wall Interactions in Controlled Fusion, Springer Science \& Business Media.
  4. [4]  Federici, G., Andrew, P., Barabaschi, P., Brooks, J., et al (2003), Key ITER plasma edge and plasma-material interaction issues, Journal of Nuclear Materials, 313, 11-22.
  5. [5]  Cordey, J.G. and Goldston, R.J. (1992), Progress toward a tokamak fusion reactor, Physics Today, 45(1), 22-30.
  6. [6]  Bertolini, E., Celentano, G., Last, J.R., Tait, J., et al (1992), The JET divertor coils, IEEE Transactions on Magnetics, 28(1), 275-278.
  7. [7]  Lipschultz, B., LaBombard, B., Terry, J.L., Boswell, C., and Hutchinson, I.H. (2007), Divertor physics research on Alcator C-Mod, Fusion Science and Technology, 51(3), 369-389.
  8. [8]  Abdullaev, S.S. and Finken, K.H. (1998), Widening the magnetic footprints in a poloidal divertor tokamak: a proposal, Nuclear Fusion, 38(4), 531-544.
  9. [9]  Jakubowski, M.W., Evans, T.E., Fenstermacher, M.E., Groth, M., Lasnier, C.J., Leonard, A.W., Schmitz, O., Watkins, J.G., Eich, T., Fundamenski, W., and Moyer, R.A. (2009), Overview of the results on divertor heat loads in RMP controlled H-mode plasmas on DIII-D, Nuclear Fusion, 49(9), 095013.
  10. [10]  Jakubowski, M.W., Abdullaev, S.S., Finken, K.H., Lehnen, M., and Team, T. (2005), Heat deposition patterns on the target plates of the dynamic ergodic divertor, Journal of Nuclear Materials, 337, 176-180.
  11. [11]  da Silva, E.C., Caldas, I.L., Viana, R.L., and Sanjuan, M.A. (2002), Escape patterns, magnetic footprints, and homoclinic tangles due to ergodic magnetic limiters, Physics of Plasmas, 9(12), 4917-4928.
  12. [12]  Daza, A., Wagemakers, A., Georgeot, B., Guery-Odelin, D., and Sanjuan, M.A. (2016), Basin entropy: a new tool to analyze uncertainty in dynamical systems, Scientific Reports, 6(1), 1-10.
  13. [13]  Daza, A., Georgeot, B., Guery-Odelin, D., Wagemakers, A., and Sanjuan, M.A. (2017), Chaotic dynamics and fractal structures in experiments with cold atoms, Physical Review A, 95(1), 013629.
  14. [14]  Aguirre, J., Viana, R.L., and Sanjuan, M.A. (2009), Fractal structures in nonlinear dynamics, Reviews of Modern Physics, 81(1), 333-386.
  15. [15]  Grebogi, C., McDonald, S.W., Ott, E., and Yorke, J.A. (1983), Final state sensitivity: an obstruction to predictability, Physics Letters A, 99(9), 415-418.
  16. [16]  McDonald, S.W., Grebogi, C., Ott, E., and Yorke, J.A. (1985), Fractal basin boundaries, Physica D: Nonlinear Phenomena, 17(2), 125-153.
  17. [17]  Balescu, R., Vlad, M., and Spineanu, F. (1998), Tokamap: A Hamiltonian twist map for magnetic field lines in a toroidal geometry, Physical Review E, 58(1), 951-964.
  18. [18]  Mathias, A.C., Kroetz, T., Caldas, I.L., and Viana, R.L. (2017), Chaotic magnetic field lines and fractal structures in a tokamak with magnetic limiter, Chaos, Solitons and Fractals, 104, 588-598.
  19. [19]  Morrison, P.J. (2000), Magnetic field lines, Hamiltonian dynamics, and nontwist systems, Physics of Plasmas, 7(6), 2279-2289.
  20. [20]  Viana, R.L. (2000), Chaotic magnetic field lines in a Tokamak with resonant helical windings, Chaos, Solitons and Fractals, 11(5), 765-778.
  21. [21]  Weyssow, B., Balescu, R., and Misguich, J.H. (1991), Chaotic diffusion across a magnetic island due to a single low-frequency electrostatic wave, Plasma Physics and Controlled Fusion, 33(7), 763-793.
  22. [22]  Ferreira, A.A., Heller, M.V.A.P., Caldas, I.L., Lerche, E.A., Ruchko, L.F., and Baccala, L.A. (2004), Turbulence and transport in the scrape-off layer TCABR tokamak, Plasma Physics and Controlled Fusion, 46, 669-679.
  23. [23]  Castro, R.M., Heller, M.V.A.P., da Silva, R.P., Caldas, I.L., Degasperi, F.T., and Nascimento, I.C. (1997), A complex probe for measurements of turbulence in the edge of magnetically confined plasmas, Review of Scientific Instruments, 68, 4418-4423.
  24. [24]  Portela, J.S., Caldas, I.L., and Viana, R.L. (2008), Tokamak magnetic field lines described by simple maps, The European Physical Journal Special Topics, 165, 195-210.
  25. [25]  Lichtenberg, A.J. (1984), Stochasticity as the mechanism for the disruptive phase of the $m = 1$ tokamak oscillations, Nuclear Fusion, 24, 1277-1289.
  26. [26]  Martin, T.J. and Taylor, J.B. (1984), Ergodic behaviour in a magnetic limiter, Plasma Physics and Controlled Fusion, 26, 321-340.
  27. [27]  da Silva, E.C., Caldas, I.L., and Viana, R.L. (2002), Bifurcations and onset of chaos on the ergodic magnetic limiter mapping, Chaos, Solitons $\&$ Fractals, 14, 403-423.
  28. [28]  Schelin, A.B., Caldas, I.L., Viana, R.L., and Benkadda, S. (2011), Collisional effects in the tokamap, Physics Letters A, 376(1), 24-30.
  29. [29]  Balescu, R. (1998), Hamiltonian nontwist map for magnetic field lines with locally reversed shear in toroidal geometry, Physical Review E, 58(3), 3781-3792.
  30. [30]  Freis, R.P., Hartman, C.W., Hamzeh, F.M., and Lichtenberg, A.J. (1973), Magnetic-island formation and destruction in a levitron., Nuclear Fusion, 13(4), 533-548.
  31. [31]  Lichtenberg, A.J. and Lieberman, M.A. (1992), Regular and Chaotic Dynamics, 2nd. Ed. New York: Springer
  32. [32]  Filonenko, N.N., Sagdeev, R.Z., and Zaslavsky, G.M. (1967), Destruction of magnetic surfaces by magnetic field irregularities, Part II, Nuclear Fusion, 7(4), 253-266.
  33. [33]  Poon, L., Campos, J., Ott, E., and Grebogi, C. (1996), Wada basin boundaries in chaotic scattering. International Journal of Bifurcation and Chaos, 6(02), 251-265.
  34. [34]  Portela, J.S., Caldas, I.L., Viana, R.L., and Sanju{a}n, M.A. (2007), Fractal and Wada exit basin boundaries in tokamaks, International Journal of Bifurcation and Chaos, 17(11), 4067-4079.
  35. [35]  Kroetz, T., Roberto, M., Caldas, I.L., Viana, R.L., Morrison, P.J., and Abbamonte, P. (2010), Integrable maps with non-trivial topology: application to divertor configurations, Nuclear Fusion, 50(3), 034003.
  36. [36]  P{e}ntek, A., Toroczkai, Z., T{e}l, T., Grebogi, C., and Yorke, J.A. (1995), Fractal boundaries in open hydrodynamical flows: Signatures of chaotic saddles, Physical Review E, 51(5), 4076-4088.
  37. [37]  Jakubowski, M.W., Schmitz, O., Abdullaev, S.S., Brezinsek, S., Finken, K.H., Kramer-Flecken, A., and Textor, T. (2006), Change of the magnetic-field topology by an ergodic divertor and the effect on the plasma structure and transport, Physical Review Letters, 96(3), 035004.
  38. [38]  Jakubowski, M.W., Abdullaev, S.S., Finken, K.H., and Textor, T. (2004), Modelling of the magnetic field structures and first measurements of heat fluxes for TEXTOR-DED operation, Nuclear Fusion, 44(6), S1-S11.
  39. [39]  Evans, T.E., Roeder, R.K.W., Carter, J.A., Rapoport, B.I., Fenstermacher, M.E., and Lasnier, C.J. (2005), Experimental signatures of homoclinic tangles in poloidally diverted tokamaks, Journal of Physics: Conference Series, 7(1), 015
  40. [40]  Abdullaev, S.S., Finken, K.H., Jakubowski, M., and Lehnen, M. (2006), Mappings of stochastic field lines in poloidal divertor tokamaks. Nuclear Fusion, 46(4), S113.
  41. [41]  Evans, T.E., Roeder, R.K.W., Carter, J.A., and Rapoport, B.I. (2004), Homoclinic tangles, bifurcations and edge stochasticity in diverted tokamaks, Contributions to Plasma Physics, 44(1-3), 235-240.