Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Detecting Unstable Sets in an Estimated Parameter Space for the H{' e}non Map

Journal of Applied Nonlinear Dynamics 12(3) (2023) 579-589 | DOI:10.5890/JAND.2023.09.011

Yoshitaka Itoh

Department of Electrical and Electronic Engineering, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan

Download Full Text PDF

 

Abstract

A method has been proposed for reconstructing bifurcation diagrams by estimating the parameter space from only time-series data sets. Here, the time-series data sets are generated from an unknown system with different parameter values and we detect unstable sets in an estimated parameter space for the H{\'e}non map. In this way, chaos in the unknown system can be controlled to stay as an unstable set. With this method, we can identify both the stable and unstable sets even when the parameter values change. Results of numerical experiments are presented for detection of unstable sets of various cycles in the estimated parameter space.

References

  1. [1]  Tokunaga, R., Kajiwara, S., and Matsumoto, S. (1994), Reconstructing bifurcation diagrams only from time-waveforms, Physica D, 79, 348-360.
  2. [2]  Tokuda, I., Kajiwara, S., Tokunaga, R., and Matsumoto, T. (1996), Recognizing chaotic time-waveforms in terms of a parametrized family of nonlinear predictors, Physica D, 95, 380-395.
  3. [3]  Ogawa, S., Ikeguchi, T., Matozaki, T., and Aihara, K. (1996), Nonlinear modeling by radial basis function networks, IEICE Transaction Fundamentals, E79-A, 1608-1617.
  4. [4]  Bagarinao, E., Pakdaman, K., Nomura, T., and Sato, S. (1999), Time series-based bifurcation diagram reconstruction, Physica D, 130, 211-231.
  5. [5]  Bagarinao, E., Pakdaman, K., Nomura, T., and Sato, S. (1999), Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models, Physical Review E, 60, 1073-1076.
  6. [6]  Bagarinao, E., Pakdaman, K., Nomura, T., and Sato, S. (2000), Reconstructing bifurcation diagrams of dynamical systems using measured time series, Methods of Information in Medicine, 39, 146-149.
  7. [7]  Langer, G. and Parlitz, U. (2004), Modeling parameter dependence from time series, Physical Review E, 70, 056217.
  8. [8]  Itoh, Y., Tada, Y., and Adachi, M. (2017), Reconstructing bifurcation diagrams with lyapunov exponents from only time-series data using an extreme learning machine, Nonlinear Theory and Its Applications, IEICE, 8, 2-14.
  9. [9]  Itoh, Y. and Adachi, M. (2018), A quantitative method for evaluating reconstructed one-dimensional bifurcation diagrams, Journal of Computers, 13, 271-278.
  10. [10]  Itoh, Y. and Adachi, M. (2017), Reconstruction of bifurcation diagrams using an extreme learning machine with a pruning algorithm, Proceedings of International Joint Conference on Neural Networks, pp. 1809-1816.
  11. [11]  Itoh, Y. and Adachi, M. (2018), Bifurcation diagrams in estimated parameter space using a pruned extreme learning machine, Physical Review E, 98, 013301-1-12.
  12. [12]  Itoh, Y. and Adachi, M. (2021), Reconstructing one- and two-bifurcation diagrams of all components in the rossler equations only from time-series data sets, Nonlinear Theory and Its Applications, IEICE, 12, 391-398.
  13. [13]  Itoh, Y. and Adachi, M. (2018), Reconstruction of bifurcation diagrams using time-series data generated by electronic circuits of the r\"{o}ssler equations, Proceedings of 2018 International Symposium on Nonlinear Theory and its Applications, pp. 439-441.
  14. [14]  Itoh, Y., Uenohara, S., Adachi, M., Morie, T., and Aihara, K. (2020), Reconstructing bifurcation diagrams only from time-series data generated by electronic circuits in discrete-time dynamical systems, Chaos, 30.
  15. [15]  Itoh, Y. and Adachi, M. (2019), Tracking bifurcation curves in the h{e}non map from only time-series datasets, Nonlinear Theory and Its Applications, IEICE, 10, 268-278.
  16. [16]  Ott, E., Grebogi, C., and Yorke, J.A. (1990), Controlling chaos, Physical Review Letters, 64, 1196-1199.
  17. [17]  Pyragas, K. (1992), Continuous control of chaos by self-controlling feedbac, Physics Letters A, 170, 421-428.
  18. [18]  So, P., Ott, E., Schiff, S.J., Kaplan, D.T., Sauer, T., and Grebogi, C. (1996), Detecting unstable periodic orbits in chaotic experimental data, Physical Review Letters, 76, 4705-4708.
  19. [19]  So, P., Ott, E., Sauer, T., Gluckman, B.J., Grebogi, C., and Schiff, S.J. (1997), Extracting unstable periodic orbits from chaotic time series data, Physical Review E, 55, 5398-5417.
  20. [20]  Saiki, Y. (2007), Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors, Nonlinear Processes in Geophysics, 14, 615-620.
  21. [21]  Huang, G.B., Zhu, Q.Y., and Siew, C.K. (2006), Extreme learning machine: Theory and applications, Neurocomputing, 70, 489-501.
  22. [22]  Ying, L. and Fan-jun, L. (2013), A pruning algorithm for extreme learning machine, Proceedings of International Conference on Intelligent Data Engineering and Automated Learning, 1-7.
  23. [23]  H{e}non, M. (1976), A two-dimensional mapping with a strange attractor, Communications in Mathematical Physics, 50(1), 69-77.
  24. [24]  Takens, F. (1981), Detecting Strange Attractors in Turbulence, vol. 898. Springer.