Journal of Applied Nonlinear Dynamics
A New (3+1) Date-Jimbo-Kashiwara-Miwa Equation: Solutions and Conservation Laws
Journal of Applied Nonlinear Dynamics 12(2) (2023) 353--361 | DOI:10.5890/JAND.2023.06.012
T. Goitsemang$^{1}$, B. Muatjetjeja$^{1,2}$, D. M. Mothibi$^{3}$, T. G. Motsumi${^1}$
$^1$ Department of Mathematics, Faculty of Science, University of Botswana,
Private Bag 22, Gaborone, Botswana
$^2$ Department of Mathematical Sciences,
North-West University, Mafikeng Campus, Private Bag X2046,
Mmabatho
2735, Republic of South Africa
$^3$ Department of Mathematical Sciences, Sol Plaatje University,
Private Bag X5008, Kimberley
8300, Republic
of South Africa
Download Full Text PDF
Abstract
This study aims to establish exact solutions of a new (3+1) Date-Jimbo-Kashiwara-Miwa equation. The method of the modern group analysis will be implemented to derive exact solutions of the aforementioned equation. In addition, the variational method will be employed to construct conserved vectors of a new (3+1) Date-Jimbo-Kashiwara-Miwa equation. Furthermore, a brief physical interpretation of these conserved vectors will be mentioned.
References
-
[1]  | Gu, C., Hu, H., and Zhou, Z. (2005), Darboux Transformation in Soliton Theory and Its Geometric Applications, Springer, The Netherlands.
|
-
[2]  | Wazwaz, A. (2020), New $(3+1)$-dimensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent coefficients: Painlev{e} integrability, Physics Letters A, 384, 126-787.
|
-
[3]  | Hirota, R. (2004), The Direct Method in Soliton Theory, Cambridge University Press, Cambridge.
|
-
[4]  | Zhao, Z. and He, L. (2020), B\"{a}cklund transformatiom and Riemann-B\"{a}cklund method to a (3+1)-dimensional breaking soliton equation, European Physical Journal Plus, 135, 639.
|
-
[5]  | Geng, X.G., Zhai, Y.Y., and Dai, H.H. (2014), Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierachy, Advances in Mathematics, 263, 123-153.
|
-
[6]  | Sirendaoreji, S. and Jiong, S. (2003), Auxiliary equation method for solving nonlinear partial differential equations, Physics Letters A, 309, 387-396.
|
-
[7]  | Bluman, G.W. and Kumei, S. (1989), Symmetries and Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 81.
|
-
[8]  | Olver, P.J. (1993), Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics,
2nd edition, Springer-Verlag, Berlin, 107.
|
-
[9]  | Zhao, Z. and He, L. (2021), M-lump and hybrid solutions of a generalized (2+1)-dimensional Hirota-Satsuma-Ito equation, Applied Mathematics Letters, 111, 106612.
|
-
[10]  |
Zhao, Z. (2019), Conservation laws and nonlocally related systems of the Hunter-Saxton equation for liquid crystal, Analysis and Mathematical Physics, 9, 2311-2327.
|
-
[11]  | Zhao, Z. and He, L. (2021), Lie symmetries, nonlocal symmetry analysis, and interaction of solutions of a (2+1)-dimensional KDV-MKDV equation, Theoretical and Mathematical Physics, 206, 142-162.
|
-
[12]  |
Wazwaz, A. (2005), The Tanh and Sine-Cosine method for compact and
noncompact solutions of nonlinear Klein Gordon equation, Applied Mathematics and Computation, 167, 1179-1195.
|
-
[13]  |
He, J.H. and Wu, X.H. (2006), Exp-function method for nonlinear wave equations, Chaos Solitons and Fractals, 30, 700-708.
|
-
[14]  | Chauhan, A., Sharma, K., and Arora, R. (2020), Lie symmetry analysis, optimal system, and generalized group invariant solutions of the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Mathematical Methods in the
Applied Sciences, 43, 8823-8840.
|
-
[15]  | Moroke, M.C., Muatjetjeja, B., and Adem, A.R. (2021), On the symbolic computation of exact solutions and conservation laws of a generalized (2+1)-dimensional Calogaro-Bogoyavlenskii-Schiff equation, Journal of Interdisciplinary Mathematics, 24, 1607-1615.
|
-
[16]  | Naz, R., Mahomed, F.M., and Mason, D.P. (2008), Comparison of different approaches to conservation laws for some
partial differential equations in fluid mechanics, Applied Mathematics and Computation, 205, 212-230.
|
-
[17]  | Moleleki, L.D. (2018), Solutions and conservation laws of a generalized 3D Kawahara equation, The European Physical Journal-Plus, 133, 496.
|
-
[18]  | Ovsiannikov, L.V. (1982), Group Analysis of Differential Equations, Academic Press: New York.
|
-
[19]  | Olver, P.J. (1995), Equivalence, Invariants, and Symmetry, Cambridge University, Press.
|
-
[20]  | Steudel, H. (1962), Uber die Zuordnung zwischen invarianzeigenschaften und Erhaltungssatzen, Zeitschrift für Naturforschung A, 17A, 129-32.
|
-
[21]  | Leal da Silva, P., Freire, I.L. (2021), A geometrical demonstration for continuation of solutions of the generalised BBM equation, Monatshefte f\"{ur Mathematik}, 194, 495-502.
|