Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


An Application of SEIR Model to the COVID-19 Spread

Journal of Applied Nonlinear Dynamics 12(2) (2023) 327--337 | DOI:10.5890/JAND.2023.06.010

U. A. Rozikov$^{1,2,3}$, S. K. Shoyimardonov$^1$

$^1$ V.I. Romanovskiy Institute of Mathematics of Uzbek Academy of Sciences, Tashkent, Uzbekistan

$^2$ AKFA University, National Park Street, Tashkent, Uzbekistan

$^3$ Faculty of Mathematics, National University of Uzbekistan, 100174, Tashkent, Uzbekistan

Download Full Text PDF

 

Abstract

The Susceptible-Exposed-Infectious-Recovered (SEIR) model is applied in several countries to ascertain the spread of the coronavirus disease 2019 (COVID-19). We consider discrete-time SEIR epidemic model in a closed system which does not account for births or deaths, total population size under consideration is constant. This dynamical system is generated by a non-linear evolution operator depending on four parameters. Under some conditions on parameters we reduce the evolution operator to a quadratic stochastic operator (QSO) which maps 3-dimensional simplex to itself. We show that the QSO has uncountable set of fixed points (all laying on the boundary of the simplex). It is shown that all trajectories of the dynamical system (generated by the QSO) of the SEIR model are convergent (i.e. the QSO is regular). Moreover, we discuss the efficiency of the model for Uzbekistan.

References

  1. [1]  Martcheva, M. (2015), An Introduction to Mathematical Epidemiology, Springer, 462 p.
  2. [2]  Radulescu, A., Williams, C., and Cavanagh, K. (2020), Managment strategies in a SEIR-type model of COVID 19 community spread, Scientific Reports, 10(1), 1-16.
  3. [3]  Shoyimardonov, S.K. (2021), A non-linear discrete-time dynamical system related to epidemic SISI model, Communications in Mathematics, 505-525.
  4. [4]  Boxonov, Z.S. and Rozikov, U.A. (2021), Dynamical system of a mosquito population with distinct birth-death rates, Journal of Applied Nonlinear Dynamics, 10(4), 807-816.
  5. [5]  Boxonov, Z.S. (2020), Discrete dynamic system of mathematical model of coronavirus spread, Nonlinear Studies, 27(3), 823-830.
  6. [6]  Ganikhodzhaev, R.N., Mukhamedov, F.M., and Rozikov, U.A. (2011), Quadratic stochastic operators and processes: results and open problems, Quantum Probability, Orthogonal Polynomials and Quantum Field, 14 (2) 279-335.
  7. [7]  Lyubich, Y.I. (1992), Mathematical Structures in Population Genetics, Springer-Verlag: Berlin.
  8. [8]  Rozikov, U.A. (2020), Population Dynamics: Algebraic and Probabilistic Approach, World Science Publish: Singapore, 460 p.
  9. [9]  Rozikov, U.A. and Shoyimardonov, S.K. (2019), Ocean ecosystem discrete time dynamics generated by l-Volterra operators, International Journal of Biomathematics, 12(2), 1950015-1--1950015-24.
  10. [10]  Rozikov, U.A., Shoyimardonov, S.K., and Varro, R. (2021), Planktons discrete-time dynamical systems, Nonlinear Studies, 28(2), 585-600.
  11. [11]  Devaney, R.L. (2003), An Introduction to Chaotic Dynamical System, Westview Press, 336 p.
  12. [12]  Galor, O. (2007), Discrete Dynamical Systems, Springer, 158 p.
  13. [13]  Osipenko, G. (2009), Center Manifolds, In: Meyers R. (eds) Encyclopedia of Complexity and Systems Science, Springer: New York, 17 pp.
  14. [14]  Rozikov, U.A., and Shoyimardonov, S.K. (2020), A Model for COVID-19 pandemic and prediction for Uzbekistan, Bulletin of Mathematical Sciences, 2, 19-21.
  15. [15]  Lu, J. (2020), A new, simple projection model for COVID-19 pandemic, https://doi.org/10.1101/ 2020.03.21.20039867.