Journal of Applied Nonlinear Dynamics
An $(\alpha,\beta)$- Quadratic Stochastic Operator Acting in $S^2$
Journal of Applied Nonlinear Dynamics 11(4) (2022) 777--788 | DOI:10.5890/JAND.2022.12.001
U.U. Jamilov$^{1,2,3}$, Kh. O. Khudoyberdiev$^{1}$
$^{1}$ V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences,
9, University str., Tashkent,
Uzbekistan
$^{2}$ Akfa University, 264, National Park str., Qibray district, 111221, Tashkent region,
Uzbekistan
$^{3}$ National University of Uzbekistan, 4, University str., Tashkent, Uzbekistan
Download Full Text PDF
Abstract
In the present paper we consider a family of non-Volterra quadratic stochastic operators depending on the parameters $\alpha, \beta$ and study their trajectory behaviors.
We find all fixed and periodic points for an $(\alpha,\beta)$- quadratic stochastic operator on the two-dimensional simplex.
A complete description of the set of limit points is given, and we show that
such operators have the ergodic property.
References
-
[1]  |
Lyubich, Y.I. (1992), Mathematical structures in population genetics, vol. 22 of Biomathematics, Springer-
Verlag, Berlin.
|
-
[2]  |
Bernstein, S. (1942), Solution of a mathematical problem connected with the theory of
heredity, The Annals of Mathematical Statistics, 13(1), 53-61.
|
-
[3]  |
Ganikhodjaev, N.N., Ganikhodjaev, R.N., and Jamilov(Zhamilov), U.U. (2015), Quadratic stochastic operators
and zero-sum game dynamics, Ergod. Th. and Dynam. Sys., 35(5), 1443-1473.
|
-
[4]  |
Ganikhodjaev, N.N. Jamilov, U.U., and Mukhitdinov, R.T. (2013), On non - ergodic transformations on $S^3$,
Jour. Phys. Conf. Ser., 435, 012005.
|
-
[5]  |
Ganikhodjaev, N.N., Jamilov, U.U., and Mukhitdinov, R.T. (2014), Nonergodic quadratic operator for a two-sex population,
Ukrainian Math. J., 65(8), 1282-1291.
|
-
[6]  |
Ganikhodzhaev, R.N. (1993), Quadratic stochastic operators, Lyapunov functions and tournaments, Sb. Math., 76(2), 489-506.
|
-
[7]  |
Ganikhodzhaev, R., Mukhamedov, F., and Rozikov, U. (2011), Quadratic stochastic operators and processes:
results and open problems, Infin. Dimens. Anal. Quan. Probab. Relat. Top., 14(2), 279-335.
|
-
[8]  |
Jamilov, U.U. (2013), Quadratic stochastic operators corresponding to graphs, Lobachevskii J. Math., 34(2), 148-151.
|
-
[9]  |
Jamilov, U.U. (2016), On a family of strictly non-volterra quadratic stochastic operators, Jour. Phys. Conf. Ser., 697, 012013.
|
-
[10]  |
Jamilov, U.U. (2016), On symmetric strictly non-Volterra quadratic stochastic operators, Disc. Nonlin. Comp., 5(3), 263-283.
|
-
[11]  |
Jamilov, U.U. and Ladra, M. (2016), Non-ergodicity of uniform quadratic stochastic operators,
Qual. Theory Dyn. Syst., 15(1), 257-271.
|
-
[12]  |
Jamilov, U.U., Ladra, M., and Mukhitdinov, R.T. (2017), On the equiprobable strictly non-Volterra quadratic
stochastic operators, Qual. Theory Dyn. Syst., 16(3), 645-655.
|
-
[13]  |
Jamilov, U.U., Scheutzow, M., and Wilke-Berenguer, M. (2017), On the random dynamics of Volterra quadratic
operators, Ergodic Th. Dynam. Sys., 37(1), 228-243.
|
-
[14]  |
Kesten, H. (1970), Quadratic transformations: A model for population growth. I, Advances in Appl. Probability,
2, 1-82.
|
-
[15]  |
Khamraev, A.Yu. (2019), On the dynamics of a quasi strictly non-Volterra quadratic stochastic operator,
Ukrainian Math. J., 71(8), 1116-1122.
|
-
[16]  |
Rozikov, U.A. and Zhamilov, U.U. (2008), F-quadratic stochastic operators, Math. Notes, 83(3-4), 554-559.
|
-
[17]  |
Rozikov, U.A. and Zhamilov, U.U. (2011), Volterra quadratic stochastic operators of a two-sex population,
Ukrainian Math. J., 63(7), 1136-1153.
|
-
[18]  |
Ulam, S.M. (1960), A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics,
8, Interscience Publishers, New York-London.
|
-
[19]  |
Zakharevich, M.I. (1978), On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings
of a simplex, Russ. Math. Surv., 33(6), 265-266.
|
-
[20]  |
Zhamilov, U.U. and Rozikov, U.A. (2009), On the dynamics of strictly non-Volterra quadratic stochastic
operators on a two-dimensional simplex, Sb. Math., 200(9), 1339-1351.
|
-
[21]  |
Mukhamedov, F. and Ganikhodjaev, N. (2015), Quantum Quadratic Operators and Processes, Springer, Berlin.
|
-
[22]  |
Lyubich, Y.I. (1974), Iterations of quadratic maps, Math. Econ. Func. Ana. Nauka: Moscow, 109-138. (Russian).
|
-
[23]  |
Kolokoltsov, V.N. (2010), Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Math. vol. 182,
Cambridge Univ. Press, Cambridge.
|
-
[24]  |
Devaney, R.L. (2003), An introduction to chaotic dynamical systems, Studies in Nonlinearity, Westview
Press, Boulder, CO.
|
-
[25]  |
Ganikhodjaev, N.N., Saburov, M., and Nawi, A.M. (2014), Mutation and chaos in nonlinear models of heredity,
The Sci. World Jour., 2014, 835069.
|
-
[26]  |
Hardin, A.J.M. and Rozikov, U.A. (2019), A quasi-strictly non-Volterra quadratic
stochastic operator, Qual. Theory Dyn. Syst., 18(3), 1013-1029.
|
-
[27]  |
Jamilov, U.U., Khudoyberdiev, Kh.O., and Ladra, M. (2020), Quadratic operators corresponding to
permutations, Stoch. Anal. Appl., 38(5), 929-938.
|