Journal of Applied Nonlinear Dynamics
Synchronization Methods for Chaotic Systems Involving Fractional Derivative with a Non-Singular Kernel
Journal of Applied Nonlinear Dynamics 11(2) (2022) 375--386 | DOI:10.5890/JAND.2022.06.008
Fatiha Mesdoui$^1$, Nabil Shawagfeh$^2$, Adel Ouannas$^3$
$^1$ University of Mohamed Seddik Benyahia, Jijel, Algeria
$^2$ Department of Mathematics, University of Jordan, Amman, Jordan
$^3$ Department of Mathematics and Computer Science, University of Larbi Ben M'hidi, Oum El Bouaghi, Algeria
Download Full Text PDF
Abstract
This study considers the problem of control-synchronization for chaotic systems involving fractional derivatives with a non-singular kernel.
Using an extension of the Lyapunov Theorem for systems with Atangana-Baleanu-Caputo (ABC) derivative, a suitable control scheme is designed to achieve matrix projective synchronization (MP) between nonidentical ABC systems with different dimensions. The results are exemplified by the ABC version of the Lorenz system, Bloch system, and Liu system. To show the effectiveness of the proposed results, numerical simulations are performed based on the Adams-Bashforth-Mounlton numerical algorithm.
References
-
[1]  | Magin, R.L., (2006), Fractional calculus in bioengineering, Begell House
Publishers.
|
-
[2]  | Carlson, G.E. and Halijak, C.A. (1964), Approximation of fractional capacitors
(1/s)\^{ }(1/n) by a regular Newton process, IEEE Transactions on Circuit
Theory, 11, pp 210-213.
|
-
[3]  | Pires, E.J.S., Machado, J.A.T., and de Moura, P.B. (2003), Fractional order
dynamics in a GA planner, Signal Process, 83, 2377-2386.
|
-
[4]  | Kusnezov, D., Bulgac, A., and Dang, G.D. (1999), Quantum L{e}vy processes and
fractional kinetics, Physical Review Letters, 82, 1136-1139.
|
-
[5]  | Kulich, V.V. and Lage, J.L. (2002), Application of fractional calculus to fluid
mechanics, Journal of Fluids Engineering, 124, pp 803-806.
|
-
[6]  | Podunk, I. (1999), Fractional Differential Equations. Academic Press, New York.
|
-
[7]  | Caputo, M. and Fabrizio, M. (2015), A new definition of fractional derivative
without singular kernel, Progr Fract Different Appl., 1,
73-85.
|
-
[8]  | Atangana, A. and Baleanu, D. (2016), New fractional derivatives with the nonlocal
and non-singular kernel, Theory Appl. Heat Trans. Model. Therm. Sci.,
20, 63-769.
|
-
[9]  | U\c{c}ar, S. (2020), Analysis of a basic SEIRA model with Atangana-Baleanu
derivative, AIMS Mathematics, 5(2), pp. 1411.
|
-
[10]  | Saqib, M., Khan, I., and Shafie, S. (2018), Application of Atangana-Baleanu
fractional derivative to MHD channel flow of CMC-based-CNT's nanofluid
through a porous medium, Chaos, Solitons $&$ Fractals, 116,
79-85.
|
-
[11]  | Ghanbari, B., G\"{u}nerhan, H., and Srivastava, H.M. (2020), An application of the
Atangana-Baleanu fractional derivative in mathematical biology: A
three-species predator-prey model, Chaos, Solitons {$\&$ Fractals}, 138, 109910.
|
-
[12]  | Khan, M.A., Atangana, A., and Alzahrani, E. (2020), The dynamics of
COVID-19 with quarantined and isolation, Advances in Difference Equations,
2020(1), pp 425.
|
-
[13]  | Koca, I. (2017), Analysis of rubella disease model with non-local and
non-singular fractional derivatives, An International Journal of
Optimization and Control. Theories {$\&$ Applications} (IJOCTA),
8(1), 17-25.
|
-
[14]  | Sweilam, N.H., Al-Mekhlafi, S.M., Assiri, T., and Atangana, A. (2020), Optimal
control for cancer treatment mathematical model using
Atangana-Baleanu-Caputo fractional derivative, Advances in Difference
Equations, 2020(1), pp 334.
|
-
[15]  | U\c{c}ar, S., U\c{c}ar, E., \"{O}zdemir, N., and
Hammouch, Z. (2019), Mathematical
analysis and numerical simulation for a smoking model with
A0tangana-Baleanu derivative, Chaos, Solitons {$\&$ Fractals},
118(C), pp 300-306.
|
-
[16]  | Pecora, L.M. and Carrol, T.L. (1990), Synchronization in chaotic systems,
Phys. Rev A., 64, pp. 8.
|
-
[17]  | Luo, A. (2009), A theory for synchronization of dynamical systems,
Communication in Nonlinear Sciences and Numerical Simulation, 14(10), 1901-1951.
|
-
[18]  | Odibat, Z., Corson, N., Alaoui, M.A.A., and Bertelle, C. (2010), Synchronization
of chaotic fractional-order systems via linear control, International
Journal of Bifurcation and Chaos, 20, 81-97.
|
-
[19]  | Chen, X.R. and Liu, C.X. (2012), Chaos Synchronization of fractional-order
unified chaotic system via nonlinear control, International Journal of
Modern Physics B, 25, 407-415.
|
-
[20]  | Srivastava, M., Ansari, S.P., Agrawal, S.K., Das, S.,
Leung, A.Y.T. (2014), Antisynchronization between identical and non-identical
fractional-order chaotic systems using active control method, Nonlinear
Dynamics, 76, pp 905-914.
|
-
[21]  | Agrawal, S.K., Srivastava, M., and Das, S. (2012), Synchronization of
fractional-order chaotic systems using active control method, Chaos,
Solitons {$\&$ Fractals}, 45(6), 737-752.
|
-
[22]  | Das, S., Srivastava, M., and Leung, A.Y.T. (2013), Hybrid phase synchronization
between identical and nonidentical three-dimensional chaotic systems using
the active control method, Nonlinear Dynamics, 73(4), 2261-2272.
|
-
[23]  | Odibat, Z. (2010), Adaptive feedback control and synchronization of
non-identical chaotic fractional-order systems, Nonlinear Dynamics,
60, 479-487.
|
-
[24]  | Agrawal, S.K. and Das, S. (2014), Function projective synchronization between
four-dimensional chaotic systems with uncertain parameters using a modified
adaptive control method, Journal of Process Control,
24(5),
517-530.
|
-
[25]  | Agrawal, S.K. and Das, S. (2013), Modified adaptive control method for
synchronization of some fractional chaotic systems with unknown parameters,
Nonlinear Dynamics, 73, 907-919.
|
-
[26]  | Razminia, A. and Baleanu, D. (2013), Complete synchronization of commensurate
fractional-order chaotic systems using sliding mode control, Mechatronics,
23, 873-879.
|
-
[27]  | Al-Sawalha, M.M., Alomari, A.K., Goh, S.M., and Nooran, M.S.M. (2011), Active
antisynchronization of two identical and different fractional-order chaotic
systems, International Journal of Nonlinear Science,
11,
267-274.
|
-
[28]  | Si, G., Sun, Z., Zhang, Y., and Chen, W. (2012), Projective synchronization of
different fractional-order chaotic systems with non-identical orders,
Nonlinear Analytics: Real World Applications, 13, 1761-1771.
|
-
[29]  | Chai, Y., Chen, L., Wu, R., and Dai, J. (2013), Q-S synchronization of the
fractional-order unified system, Pramana, 80, 449-461.
|
-
[30]  | Feng, H., Yang, Y., and Yang, S.P. (2013), A new method for full state hybrid
projective synchronization of different fractional-order chaotic systems,
Applied Mechanics and Materials, 385-38, 919-922.
|
-
[31]  | Zhang, X.D., Zhao, P.D., and Li, A.H. (2010), Construction of a new fractional
chaotic system and generalized synchronization, Communications in
Theoretical Physics, 53, 1105-1110.
|
-
[32]  | Ouannas, A. and Al-Sawalha, M.M. (2016), On $\Lambda -\phi $ generalized
synchronization of chaotic dynamical systems in continuous-time, European
Physical Journal Special Topics, 225, 187-196.
|
-
[33]  | Ouannas, A., Al-Sawalha, M.M., and Ziar, T. (2016), Fractional chaos
synchronization schemes for different dimensional systems with non-identical
fractional-orders via two scaling matrices, Optik, 127,
8410-8418.
|
-
[34]  | Ouannas, A. and Abu-Saris, R. (2016), On Matrix Projective Synchronization and
Inverse Matrix Projective Synchronization for Different and Identical
Dimensional Discrete-Time Chaotic Systems, Journal of Chaos, 2016,
pp. 7.
|
-
[35]  | Yan, W. and Ding, Q. (2019), A New Matrix Projective Synchronization and Its
Application in Secure Communication, IEEE Access, 7,
112977-112984.
|
-
[36]  | Taneco-Hern{a}ndez, M. and Vargas-De-Le{o}n, C. (2020), Stability and Lyapunov
functions for systems with Atangana-Baleanu Caputo derivative: An HIV/AIDS
epidemic model, Chaos, Solitons {$\&$ Fractals}, 132, 109586.
|
-
[37]  | Diethelm, K., Ford, N.J., and Freed, A.D. (2002), A predictor-corrector approach for
the numerical solution of fractional differential equations, Nonlinear Dyn.,
29(1-4). pp. 3-22.
|
-
[38]  | Atangana, A. and Koca, I. (2016), Chaos in a simple nonlinear system with
Atangana-Baleanu derivatives with fractional order, Chaos, Solitons &
Fractals, 89, 447-454.
|
-
[39]  | G{o}mez-Aguilar, J.F. (2018), Chaos in a nonlinear Bloch system with
Atangana-Baleanu fractional derivatives, Numer Methods Partial Differ
Equations, 34, 1716-1738
|
-
[40]  | Han, Q., Liu, C.X., Sun, L. and Zhu, D.R. (2013), A fractional-order hyperchaotic
system derived from a Liu system and its circuit realization, Chinese
Physics B, 22, 6-020502.
|
-
[41]  | Ouannas, A., Odibat, Z., and Shawagfeh, N. (2016), A new Q-S synchronization results
for discrete chaotic systems, Diff. Eq. Dyn. Syst., 27(4),
413-422.
|
-
[42]  | Ouannas, A., Odibat, Z., Shawagfeh, N., Alsaedi, A., and Ahmad, B. (2017), Universal
chaos synchronization control laws for general quadratic discrete systems,
Appl. Math. Model, 45, 636-641.
|
-
[43]  | Mesdoui, F., Ouannas, A., Shawagfeh, N., Grassi, G., and Pham, V.T. (2020),
Synchronization Methods for the Degn-Harrison Reaction-Diffusion Systems,
IEEE Access, 8, 91829-91836.
|
-
[44]  | Mesdoui, F., Shawagfeh, N., and Ouannas, A. (2020), Global synchronization of
fractional-order and integer-order N component reaction-diffusion systems:
Application to biochemical models, Math Meth Appl Sci, 1-10.
|