Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Global Existence and General Decay of a Weakly Nonlinear Damped Timoshenko System of Thermoelasticity of Type III with Infinite Memory

Journal of Applied Nonlinear Dynamics 11(1) (2022) 195--215 | DOI:10.5890/JAND.2022.03.012

Mohamed Houasni$^{1,3}$ , Salah Zitouni$^{2}$, Abdelhak Djebabla$^{3}$

$^1$ Facult\'{e} des Sciences et de la Technologie, Universit\'{e} DBKM, Alg\'{e}rie

$^{2}$ Department of Mathematics, Souk Ahras Univ, P.O. Box 1553, Souk Ahras, 41000, Algeria

$^{3}$ Laboratory of Applied Mathematics, University Badji Mokhtar, P.O. Box 12, 23000 Annaba, Algeria

Download Full Text PDF

 

Abstract

In this work, we consider a one-dimensional Timoshenko system of thermoelasticity of type III with infinite memory damped by weakly nonlinear feedbacks. Under suitable conditions, we establish the well-posedness of the problem using semigroups theory, and a general stability estimates using the multiplier method with no growth assumption on $f$ at the origin and without assuming equal or nonequal speeds of propagation of waves which is mentioned in numerous works (e.g. \cite{ayadi,chen,Fareh,jh,hao,masap}). Our results show that the damping effect leads to general decay rate for the energy function and also remove the necessity of the assumption on equal speeds which has been imposed in the prior literature.

References

  1. [1]  Ayadi, M.A., Bchatnia, A., Hamouda, M., and Messaoudi, S. (2015), General decay in a Timoshenko-type system with thermoelasticity with second sound, Adv. Nonlinear Anal., 4, 263-284.
  2. [2]  Chen, M., Liu, W., and Zhou, W. (2016), Existence and general stabilization of the Timoshenko system of thermo-viscoelasticity of type III with frictional damping and delay terms, Advances in Nonlinear Analysis, 7(4), 547-570.
  3. [3]  Fareh, A. and Messaoudi, S. (2017), Stabilization of a type III thermoelastic Timoshenko system in the presence of a time-distributed delay, Mathematische Nachrichten, 290(7), 1017-1032.
  4. [4]  Hao, J. and Wang, F. (2018), Energy decay in a Timoshenko-type system for thermoelasticity of type III with distributed delay and past history, Elect. J. Differ. Eqns., 75, 1-27.
  5. [5]  Hao, J. and Wei, J. (2018), Global existence and stability results for a nonlinear Timoshenko system of thermoelasticity of type III with delay, Boundary Value Problems, 65, 1-17.
  6. [6]  Messaoudi, S. and Apalara, T.A. (2014), General stability result in a memory-type porous thermoelasticity system of type III, Arab J. of Math. Sci., 20(2), 213-232.
  7. [7]  Cavalcanti, M.M. and Oquendo, H.P. (2003), Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim, 42(4), 1310-1324.
  8. [8]  Fern{a}ndez Sare, H.D. and Racke, R. (2009), On the stability of damped Timoshenko systems - Cattaneo versus Fourier's law, Arch. Rational Mech. Anal., 194(1), 221-251.
  9. [9]  Kafini, M., Messaoudi, S., and Mustafa, M.I. (2013), Energy decay result in a Timoshenko-type system of thermoelasticity of type III with distributive delay, J. Math. Phys., 54, 1-14.
  10. [10]  Kafini, M., Messaoudi, S., Mustafa, M.I., and Apalara, T.A. (2015), Well-posedness and stability results in a Timoshenko-type system of thermoelasticity of type III with delay, Zeitschrift fur angewandte Mathematik und Physik ZAMP, 66, 1499-1517.
  11. [11]  Messaoudi, S. and Mustafa, M.I. (2009), A stability result in a memory-type Timoshenko system, Dynamic. Apll., 18(3), 457-468.
  12. [12]  Aassila, M. (2002), Stabilization of a nonlinear Timoshenko beam, Z. Angew. Math. Phys., 53, 747-768.
  13. [13]  Alabau-boussouira, F. (2007), Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, Nonlinear Differ. Equ. Appl., 14, 643-669.
  14. [14]  Park, J. and Kang, J. (2011), Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation, IMA Journal of Applied Mathematics, 76, 340-350.
  15. [15]  Cavalcanti, M.M, Domingos Cavalcanti, V.N., Falc\~{a}o Nascimento, F.A., Lasiecka, I., and Rodrigues, J.H. (2014), Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys., 65, 1189-1206.
  16. [16]  Feng, B. and Yang, X. (2017), Long-time dynamics for a nonlinear Timoshenko system with delay, Appl. Anal., 96(4), 606-625.
  17. [17]  Djebabla, A. and Tatar, N.T. (2010), Exponential stabilization of the Timoshenko system by a thermo-viscoelastic damping, J. Dyn. Control Syst., 16(2), 189-210.
  18. [18]  Messaoudi, S. and Fareh, A. (2011), General decay for a porous thermoelastic system with memory: the case of equal speeds, Nonlinear Anal. TMA, 74, 6895-6906.
  19. [19]  Messaoudi, S. and Fareh, A. (2013), General decay for a porous thermoelastic system with memory: the case of nonequal speeds, Acta Math. Sci., 33B(1), 1-19.
  20. [20]  Kafini, M. (2011), General energy decay in a Timoshenko-type system of thermoelasticity of type III with a viscoelastic damping, J. Math. Anal. Appl., 375, 523-537.
  21. [21]  Abdelli, M. and Benaissa, A., (2008) Energy decay of solutions of a degenerate Kirchhoff equation with a weak nonlinear dissipation, Nonlinear Anal. Theory Methods Appl., 69, 1999-2008.
  22. [22]  Apalara, T.A. (2019), A general decay for a weakly nonlinearly damped Porous system, J Dyn Control Syst, 25, 311-322.
  23. [23]  Bahlil, M. (2017), Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear time varying delay term in the weakly nonlinear internal feedbacks, Elec. J. of Math. Anal. and Appl., 5(1), 219-241.
  24. [24]  Benaissa, A. and Guesmia, A. (2008), Energy decay for wave equations of $\varphi$-Laplacian type with weakly nonlinear dissipation, Electron J. Differ. Equ., 109, 1-22.
  25. [25]  Benaissa, A. and Mokeddem, S. (2007), Decay estimates for the wave equation of p-Laplacian type with dissipation of m-Laplacian type, Math. Methods Appl. Sci., 30, 237-247.
  26. [26]  Feng, B. (2017), On a semilinear Timoshenko-Coleman-Gurtin system: quasistability and attractors, Discrete Conti. Dyn. Sys., 37(9), 4729-4751.
  27. [27]  Guesmia, A. and Messaoudi, S. (2009), General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Meth. Appl. Sci., 32(16), 2102-2122.
  28. [28]  Khochemane, H.E., Bouzettouta, L., and Zitouni, S. (2019), General decay of a nonlinear damping porous-elastic system with past history, Annali dell'Universt\`{a di Ferrara}, 65, 249-275.
  29. [29]  Lasiecka, I. and Tataru, D. (1993), Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Di . Inte. Equa., 6, 507-533.
  30. [30]  Messaoudi, S., Pokojovy, M., and Said-Houari, B. (2009), Nonlinear damped Timoshenko systems with second sound--Global existence and exponential stability, Math. Meth. Appl. Sci., 32, 505-534.
  31. [31]  Liu, W.J. and Zuazua, E. (1999), Decay rates for dissipative wave equations, Ricerche di Matematica, XLVIII, 61-75.
  32. [32]  Arnold, V.I. (1989), Mathematical Methods of Classical Mechanics, Springer, New York.
  33. [33]  Brezis, H. (2011), Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science + Business Media, LLC. doi 10.1007/978-0-387-70914-7.
  34. [34]  Komornik, V. (1994), Exact Controllability and Stabilization: The Multiplier Method, Masson-John Wiley, Paris.
  35. [35]  Qin, Y., Ren, J., and Wei, T. (2012), Global existence, asymptotic stability, and uniform attractors for non-autonomous thermoelastic systems with constant time delay, J. Math. Phys., 53(6), 1-20.
  36. [36]  Rudin, W. (1974), Real and Complex Analysis (2nd edn), McGraw-Hill, New York.