Journal of Applied Nonlinear Dynamics
$2N$ Parameter Solutions to the Burgers' Equation
Journal of Applied Nonlinear Dynamics 11(1) (2022) 69--74 | DOI:10.5890/JAND.2022.03.005
Pierre Gaillard
Institut de math\'ematiques de Bourgogne,
9 avenue Alain Savary BP 47870 21078, Dijon Cedex,
Dijon, France
Download Full Text PDF
Abstract
We construct $2N$ real parameter
solutions to the Burgers' equation in terms of determinant of order
$N$ and we call these solutions,
$N$ order solutions.
We deduce general expressions of these solutions in terms of
exponentials and study the patterns of these solutions in functions
of the parameters for $N=1$ until $N=4$.
References
-
[1]  |
Bateman, H. (1915),
Some recent researches on the motion of fluids,
Monthly Weather Review, 43, 163-170.
|
-
[2]  |
Burgers, J.M. (1948),
A mathematical model illustrating the theory of turbulence,
Adv. In Appl. Mech., 1, 171-199.
|
-
[3]  |
Sugimoto, N. (1991),
Burgers equation with a fractional derivative: hereditary effects on nolinear acoustic waves,
Jour. Of Fluid Mech., 225, 631-633.
|
-
[4]  |
Bluman, G.W. and Cole, J.D. (1969),
The general similarity solution of the heat equation,
Jour. Of Math. And Mech., 18, 1025-1042.
|
-
[5]  |
Su, N., Jim, P.C., Keith, W.V., Murray, E.C., and Mao, R. (2004),
Some recent researches on the motion of fluids,
Ausr. Jour. Soil Res., 42, 42-49.
|
-
[6]  |
Burgers, J.M. (1939),
Mathematical examples illustating the relations occuring in the theory of turbulent fluid motion,
Trans. Roy. Neth. Acad. Sci. Amsterdam, 17, 1-53.
|
-
[7]  |
Burgers, J.M. (1974),
The non-linear diffusion equation: asymptotic solutions and statistical problems,
Springer.
|
-
[8]  |
Cole, J.D. (1951),
On a quasi-linear parabolic equation occuring in aerodynamics,
Quat. Of Appl. Math., 9, 225-236.
|
-
[9]  |
Whitham, G.W. (2011),
Linear and nonlinear waves,
Pure an Appl. Math., 42, Wiley And Sons.
|
-
[10]  |
Ebaid, A. (2007),
Exact solitary wave solution for some nonlinear evolution equations via exp-function method,
Phys. Lett. A, 365(3), 213-219.
|
-
[11]  |
Wazwaz, A.M. (2007),
Multiple front solutions for the Burgers equation and the coupled Burgers equations,
Appl. Math. And Comp., 190(2), 1198-1206.
|
-
[12]  |
Wolf, K.B., Hlavaty, L., and Steinberg, S. (1986),
Nonlinear differential equations as invariants under group action on
coset bundles: Burgers and Korteweg de Vries equation families,
Jour. Of Math. Ana. And Appl., 114, 340-359.
|
-
[13]  |
Hopf, E. (1950),
The partial differential equation $u_{t} + u u_{x} = u_{xx}$,
Comm. On Pure And Appl. Math., 3, 201-230.
|
-
[14]  |
Ohwada, T. (2009),
Cole-Hopf transformation as numerical tool for the Burgers equation,
Appl. And Comp. Math., 8(1), 107-113.
|
-
[15]  |
Vaganan, B.M. (2012),
Cole-Hopf transformation for higher dimensional Burgers equation with variable coefficients,
Stu. In Appl. Math., 129(3), 300-308.
|
-
[16]  |
Srivastava, E.R. and Awasthi, G.W. (2014),
(1+n)-Dimensional Burgers' equation and its
analytical solution: A comparative study of HPM, ADM and DTM,
Ain Shams Uni., 5, 625-629.
|