Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


first{Effect of External Wastage and Illegal Harvesting on the Fishery Model of the Halda River Ecosystem in Bangladesh}

Journal of Applied Nonlinear Dynamics 11(1) (2022) 33--56 | DOI:10.5890/JAND.2022.03.003

normalsize $^{1}$ Department of Mathematics, Jahangirnagar University, Dhaka, Bangladesh $^2$ Mathematics Discipline, Khulna University, Khulna, Bangladesh

Download Full Text PDF

 

Abstract

References

  1. [1]  Hallam, T.G. and Clark, C.E. (1983), Effect of toxicants on populations: A qualitive approach I. Equilibrium environmental exposure, Ecological Modeling., 18, 291-304.
  2. [2]  Hallam, T.G. and De Luna, J.T. (1984), Effect of toxicants on populations: A qualitive approach I. Equilibrium environmental and food chain pathways, J. Theor. Bio. Comput. Biol. Med., 109 411-429.
  3. [3]  Freedman, H.I. and Shukla, J.B. (1991), Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30, 15-30.
  4. [4]  Chattopadhyay, J. (1996), Effect of toxic substances on a two-species competitive system, Ecological Modelling., 84, 287-289.
  5. [5]  Huang, Q., Wang, H., and Lewis, M, A. (2015), The impect of environmental toxins on predator-prey dynamics, J. Theor. Biol., 378, 12-20.
  6. [6]  Mortoza, S.G., Panja, P., and Mondal, S.K. (2018), Dynamics of apredator prey model with stage-structure on both species and anti-predator behavior, Informatics in Medicine Unlocked, 10, 50-57.
  7. [7]  Keong, A.T., Safuan, H.M., and Jacob, K. (2018), Dynamical behaviors of prey-predator fishery model with harvesting affected by toxic substances, MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 34(1), 143-151.
  8. [8]  Satar, H.A. and Naji, R.K.(2019), Stability and Bifurcation of a Prey-PredatorScavenger Model in the Existence of Toxicant and Harvesting. International Journal of Mathematics and Mathematical Sciences, 1573516.
  9. [9]  Rni, R. and Gakkhar, S. (2019), The impact of provision of additional food to predator in predator-prey model with combined harvesting gin the presence of toxicity, Journal of Applied Mathematics and Computing, 60(1-2), 673-701.
  10. [10]  Ang, T.K., Safuan, H.M., and Kavikumar, J. (2018), Dynamical behavior of prey-predator fishery model wih th harvesting affected by toxic substances, MATHEMATIKA., 34(1), 143-151.
  11. [11]  Majeed, A.A. (2018), The dynamics of an ecological model involving stage structures in both populations with toxin, Journal of Advanced Research in Dynamical and Control System, 10 (13), 1120-1131.
  12. [12]  Huang, Q., Parshotam, L., Wang, H., and Lewis, M.A. (2013), A model for the impact of contaminants on fish population dynamics, J. Theor. Biol., 334, 71-79.
  13. [13]  Scott, G.R. and Sloman, K.A. (2004), Effect of environmental polluntant on complex fish behaviour: integrating behavioural and physiological indicators of toxicity, Aquatic Toxicology, 68 369-392.
  14. [14]  Kar, T.K. and Chaudhuri, K.S.J. (2003), On non-selective harvesting of two competing fish species in the presence of toxicity, Ecological Modelling., 161, 125-137.
  15. [15]  Das, T., Mukherjee, R.N., and chaudhuri, K.S. (2009), Harvesting of a predator-prey fishery in the presence of toxicity, Applied Mathematical Modelling, 33, 2282-2292.
  16. [16]  Islam, M.S., Akbar, A., Akhtar, A., Kibria, M.M., and Bhuyan, M.S. (2017), Water Quality Assessment Along With Pollution Sources of the Halda River, Journal of the Asiatic Society of Bangladesh, Science, 61-70.
  17. [17]  Clark, C.W. (1976), Mathematical Bioeconomics: The optimal management of renewable resources, Wiley. Princeton. Univ. Press, New York.
  18. [18]  Hale, J. (1989), Ordinary differential equation, Klieger Publising Company, Malabar.
  19. [19]  Majeed, A.A. (2018), The dynamics of an ecological model involving stage structures in both populations with toxin, Journal of Advanced Research in Dynamical and Control System, 10 (13), 1120-1131.
  20. [20]  Boyce, W.E., DiPrima, R.C., and Meade, D.B. (2017), Elementary differential equations, 11 th Edition, John Wiley, New York.
  21. [21]  Lukes, D.L. (1982), Differential Equations: Classical to Controlled, Academic Press, New York.
  22. [22]  Pontryagin, L.S., Boltyanskii, V.G., Gamkrelize, R.V., and Mishchenko, E.F. (1967), The Mathematical Theory of Optimal Processes, Wiley, New York.
  23. [23]  Fleming, W. and Rishel, R. (2005), Deterministic and Stochastic Optimal Control, Springer-Verlag, New York.
  24. [24]  Matia, S.N. and Alam, S. (2013), Prey-predator dynamics under herd behavior of prey, Univ. J. Appl. Math, 1(4), 251-257.
  25. [25]  Cheng, K.S. (1981), Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 12(4), 541-548.
  26. [26]  Hsu, S.B. (1977), On global stability of a predator-prey system, Math. Biosci., 39, 1-10.
  27. [27]  Hsu, S.B. and Huang, T.W. (1995), Global stability for a class of predator-prey system, SIAM J. Appl. Math., 55, 763-783.
  28. [28]  Sugie, J., Kohno, R., and Miyazaki, R. (1997), On a predator-prey system of Holling type, Proc. Am. Math. Soc., 125, 2041-2050.