Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)

first{Effect of External Wastage and Illegal Harvesting on the Fishery Model of the Halda River Ecosystem in Bangladesh}

Journal of Applied Nonlinear Dynamics 11(1) (2022) 33--56 | DOI:10.5890/JAND.2022.03.003

normalsize 1 Department of Mathematics, Jahangirnagar University, Dhaka, Bangladesh 2 Mathematics Discipline, Khulna University, Khulna, Bangladesh

Download Full Text PDF

 

Abstract

References

  1. [1]  Hallam, T.G. and Clark, C.E. (1983), Effect of toxicants on populations: A qualitive approach I. Equilibrium environmental exposure, Ecological Modeling., 18, 291-304.
  2. [2]  Hallam, T.G. and De Luna, J.T. (1984), Effect of toxicants on populations: A qualitive approach I. Equilibrium environmental and food chain pathways, J. Theor. Bio. Comput. Biol. Med., 109 411-429.
  3. [3]  Freedman, H.I. and Shukla, J.B. (1991), Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30, 15-30.
  4. [4]  Chattopadhyay, J. (1996), Effect of toxic substances on a two-species competitive system, Ecological Modelling., 84, 287-289.
  5. [5]  Huang, Q., Wang, H., and Lewis, M, A. (2015), The impect of environmental toxins on predator-prey dynamics, J. Theor. Biol., 378, 12-20.
  6. [6]  Mortoza, S.G., Panja, P., and Mondal, S.K. (2018), Dynamics of apredator prey model with stage-structure on both species and anti-predator behavior, Informatics in Medicine Unlocked, 10, 50-57.
  7. [7]  Keong, A.T., Safuan, H.M., and Jacob, K. (2018), Dynamical behaviors of prey-predator fishery model with harvesting affected by toxic substances, MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 34(1), 143-151.
  8. [8]  Satar, H.A. and Naji, R.K.(2019), Stability and Bifurcation of a Prey-PredatorScavenger Model in the Existence of Toxicant and Harvesting. International Journal of Mathematics and Mathematical Sciences, 1573516.
  9. [9]  Rni, R. and Gakkhar, S. (2019), The impact of provision of additional food to predator in predator-prey model with combined harvesting gin the presence of toxicity, Journal of Applied Mathematics and Computing, 60(1-2), 673-701.
  10. [10]  Ang, T.K., Safuan, H.M., and Kavikumar, J. (2018), Dynamical behavior of prey-predator fishery model wih th harvesting affected by toxic substances, MATHEMATIKA., 34(1), 143-151.
  11. [11]  Majeed, A.A. (2018), The dynamics of an ecological model involving stage structures in both populations with toxin, Journal of Advanced Research in Dynamical and Control System, 10 (13), 1120-1131.
  12. [12]  Huang, Q., Parshotam, L., Wang, H., and Lewis, M.A. (2013), A model for the impact of contaminants on fish population dynamics, J. Theor. Biol., 334, 71-79.
  13. [13]  Scott, G.R. and Sloman, K.A. (2004), Effect of environmental polluntant on complex fish behaviour: integrating behavioural and physiological indicators of toxicity, Aquatic Toxicology, 68 369-392.
  14. [14]  Kar, T.K. and Chaudhuri, K.S.J. (2003), On non-selective harvesting of two competing fish species in the presence of toxicity, Ecological Modelling., 161, 125-137.
  15. [15]  Das, T., Mukherjee, R.N., and chaudhuri, K.S. (2009), Harvesting of a predator-prey fishery in the presence of toxicity, Applied Mathematical Modelling, 33, 2282-2292.
  16. [16]  Islam, M.S., Akbar, A., Akhtar, A., Kibria, M.M., and Bhuyan, M.S. (2017), Water Quality Assessment Along With Pollution Sources of the Halda River, Journal of the Asiatic Society of Bangladesh, Science, 61-70.
  17. [17]  Clark, C.W. (1976), Mathematical Bioeconomics: The optimal management of renewable resources, Wiley. Princeton. Univ. Press, New York.
  18. [18]  Hale, J. (1989), Ordinary differential equation, Klieger Publising Company, Malabar.
  19. [19]  Majeed, A.A. (2018), The dynamics of an ecological model involving stage structures in both populations with toxin, Journal of Advanced Research in Dynamical and Control System, 10 (13), 1120-1131.
  20. [20]  Boyce, W.E., DiPrima, R.C., and Meade, D.B. (2017), Elementary differential equations, 11 th Edition, John Wiley, New York.
  21. [21]  Lukes, D.L. (1982), Differential Equations: Classical to Controlled, Academic Press, New York.
  22. [22]  Pontryagin, L.S., Boltyanskii, V.G., Gamkrelize, R.V., and Mishchenko, E.F. (1967), The Mathematical Theory of Optimal Processes, Wiley, New York.
  23. [23]  Fleming, W. and Rishel, R. (2005), Deterministic and Stochastic Optimal Control, Springer-Verlag, New York.
  24. [24]  Matia, S.N. and Alam, S. (2013), Prey-predator dynamics under herd behavior of prey, Univ. J. Appl. Math, 1(4), 251-257.
  25. [25]  Cheng, K.S. (1981), Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 12(4), 541-548.
  26. [26]  Hsu, S.B. (1977), On global stability of a predator-prey system, Math. Biosci., 39, 1-10.
  27. [27]  Hsu, S.B. and Huang, T.W. (1995), Global stability for a class of predator-prey system, SIAM J. Appl. Math., 55, 763-783.
  28. [28]  Sugie, J., Kohno, R., and Miyazaki, R. (1997), On a predator-prey system of Holling type, Proc. Am. Math. Soc., 125, 2041-2050.