Journal of Applied Nonlinear Dynamics
Anomalous Relaxation in Dielectrics with Hilfer Fractional Derivative
Journal of Applied Nonlinear Dynamics 10(3) (2021) 479--491 | DOI:10.5890/JAND.2021.09.009
A. R. G 'omez Plata , E. Capelas de Oliveira and Ester C. A. F. Rosa
Department of Mathematics, Universidad Militar Nueva Granada Cajic'a-Zipaquir'a, 250247, Colombia
Departament of Applied Mathematics, Imecc--Unicamp Campinas, 13083-859, SP, Brazil
Download Full Text PDF
Abstract
We introduce a new relaxation function depending on an arbitrary parameter as a solution of a kinetic equation
in the same way as the relaxation function introduced empirically by Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami regarding, anomalous
relaxation in dielectrics, which are recovered as particular cases. We propose a differential equation introducing a
fractional operator written in terms of the Hilfer fractional derivative of order $\xi$, with $0 < \xi \leq 1$ and type $\eta$, with $0 \leq \eta \leq 1$.
To discuss the solution of the fractional differential equation, the methodology of Laplace transform is required. As a by product we
mention particular cases where the solution is completely monotone. %Some graphics show the behaviour of this completely monotone function.
Finally, the empirical models are recovered as particular cases.
References
-
[1]  | de Oliveira, E.C., Mainardi, F., and Vaz Jr., J. (2011), {Models based on Mittag-Leffler functions for anomalous
relaxation in dielectrics}, ph {The European Physical Journal}, {193}, 161-171.
|
-
[2]  | de Oliveira, E.C., Mainardi, F., and Vaz Jr., J. (2014), {Fractional models of anomalous relaxation based on the Kilbas and Saigo function},
ph {Meccanica}, {49}(9), 2049-2060.
|
-
[3]  | de Oliveira, E.C. and Tenreiro Machado, J.A. (2014), {A review of definitions for fractional derivatives
and integrals}, ph {Math. Prob. Ing.}, {2014}, ID 238459.
|
-
[4]  | Teodoro, G.S., Machado, J.A.T., and De Oliveira, E.C. (2019), {A review of definition of fractional derivatives and others operator}, ph {J. Comput. Phys.}, {388}, 195-209.
|
-
[5]  | Tarasov, V.E. (2013), {No violation of the Leibniz rule. No fractional derivative}, ph {Comm. Nonlinear Sci. Num. Simulat.},
{18}, 2945-2948.
|
-
[6]  | Tarasov, V.E. (2018), {No nonlocality. No fractional derivative}, ph {Comm. Nonlinear Sci. Num. Simulat.},
{62}, 157-163.
|
-
[7]  | Akkurt, A., Yildirim, M.E., and Yildirim, H. (2017), {A new generalized fractional derivative and integral}, ph {Konuralp J. Math.}, {5}, 248-259.
|
-
[8]  | Caputo, M. and Fabrizio, M.A. (2015), ph{New definition of fractional derivative without singular kernel},
{ Prog. Fract. Diff. Appl.}, {1}, 73-85.
|
-
[9]  | Losada, J. and Nieto, J.J. (2015), {Properties of a new fractional derivative without singular kernel}, {1}, 87-92.
|
-
[10]  | B\"ohmer, R., Ngai, K., Angell, C., and Plazeck, D. (1993), {Nonexponential relaxations in strong and fragile glass formers},
ph {J. Chem. Phys.}, {99}, 4201.
|
-
[11]  | Hilfer, R. (2003), {On fractional relaxation}, ph {Fractals}, {11}, 251-257.
|
-
[12]  | Sabatier, J., Agrawal, O.P., Machado, J.A.T. (Editors) (2007), ph{Advances in Fractional Calculus: Theoretical Developments and Applications
in Physics and Engineering}, Springer, The Netherlands.
|
-
[13]  | Mainardi, F. (2010), ph{Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to
Mathematical Models}, Imperial College Press.
|
-
[14]  | Debye, P. (1929), ph{Polar Molecules}, Dover, New York.
|
-
[15]  | Kohlrausch, R. (1854), {Theorie des elektrischen R\"uckstandes in der Leidener Flasche}, ph {Pogg. Ann. Phys. Chem.}, {91}, 179-214.
|
-
[16]  | Williams, G. and Watts, D.C. (1970), {Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay
function}, ph {Trans. Faraday Soc.}, {66}, 80-85.
|
-
[17]  | Cardona, M., Chamberlin, R.V., and Marx, W. (2007), {Comment on the history of the stretched exponential function}, ph {Ann. Phys. }(Leipzig)
{16}, 842-845.
|
-
[18]  | Cole, K.S. and Cole, R.H. (1941), {Dispersion and absorption in dielectrics I. Alternating current characteristics},
ph {J. Chem. Phys.}, {9}, 341-351.
|
-
[19]  | Davidson, D.W. and Cole, R.H. (1950), {Dielectric relaxation in glycerine}, (Letter to the Editor), ph {J. Chem. Phys.}, {18}, 1417.
ph{Dielectric relaxation in glycerol, propylene glycol, and $n$-propanol}, J. Chem. Phys., {19}, 1484-1490 (1951).
|
-
[20]  | Havriliak, S. and Negami, S. (1967), {A complex plane representation of dielectric and mechanical relaxation processes in some polymers},
ph {Polymer}, {8}, 161-210.
|
-
[21]  | Garrappa, R. (2016), {Gr\"unwald-Letnikov operators for fractional relaxation in
Havriliak-Negami models}, ph {Comm. Non. Sci. Num. Simulat.}, {38}, 178-191.
|
-
[22]  | Bia, P., Caratelli, D., Mescia, L., Cicchetti, R., Maione, G., and Prudenzano, F. (2015),
{A novel FDTD formulation based on fractional derivatives for dispersive Havriliak-Negami
media}, ph {Signal Processing}, {107}, 312-318.
|
-
[23]  | Mainardi, F. (2018),{Fractional Calculus}: {Theorey and Applications}, ph{ Mathematica}, MDPI, Basel.
|
-
[24]  | Shibatov, R.T., Uchaikin, V.V., and Uchaikin, D.V. (2012), ph{Fractional wave equation for dielectric
medium with Havriliak-Negami response}, in {\sf Fractional Dynamics and Control}, D. Baleanu,
J. A. Tenreiro Machado, A. C. J. Luo (Editors), Springer, New York.
|
-
[25]  | Casalini, R., Paluch, M., and Roland, C.M. (2002), {Correlation between the $\alpha$-relaxation and
the excess wing for polychlorinated biphenyls and glycerol}, ph {J. Thermal Anal. Calorimetry}, {69}, 947-952.
|
-
[26]  | Rosa, E.C.F.A. and de Oliveira, E.C. (2015), {Relaxation equations: fractional models}, ph {J. Phys. Math.}, 6, 146.
doi:10.4172/2090-0902.1000146.
|
-
[27]  | Mainardi, F. and Garrappa, R. (2015), {On complete monotonicity of the Prabhakar function and non-Debye relaxation in
dielectrics}, ph {J. Comp. Phys.}, {293}, 70-80.
|
-
[28]  | Garrappa, R., Mainardi, F., and Maione, G. (2016), {Models of dielectric relaxation based on
completely monotone functions}, ph {Fract. Cal. $\&$ Appl. Anal.}, {19}, 1105-116.
|
-
[29]  | Rosa, E.C.F.A. (2017), ph{Fractional Kinetic Relaxation Functions}, (in Portuguese) Doctoral thesis, Unicamp, Campinas-SP.
|
-
[30]  | Machado, J.A.T., Mainardi, F. and Kiryakova, V. (2015), {Fractional calculus}: {Quo vadimus}? ({Where are we going}?)
(Contributions to the roundtable held in ICFDA 2014), ph {Fract. Cal. $\&$ Appl. Anal.}, {18}, 495-526.
|
-
[31]  | Machado, J.A.T., Mainardi, F., Kiryakova, V., and Atanackovi\c, T. (2016), {Fractional calculus:} {Dou venons-nous}?
{Que sommes-nous}? {O\`u allons-nous}? (Contributions to the roundtable held in ICFDA 2016), ph {Fract. Cal. $\&$ Appl. Anal.}, {19}, 1074-1104.
|
-
[32]  | Giusti, A. and Colombaro, I. (2018), {Prabhakar-like fractional viscoelasticity}, ph {Comm. Nonlinear Sci. Num. Simulat.},
{56}, 138-143.
|
-
[33]  | Chang, A., Sun, H., Zheng, C., Lu, B., Lu, C., Ma, R., and Zhang, Y. (2018), {A time fractional convection-diffusion equation to model
gas transport through heterogeneous soil and gas reservoirs}, ph {Phys. A: Stat. Mech $\&$ Appl.}, {502}, 356-369.
|
-
[34]  | Ha, S.Y. and Jung, J. (2018), {Remarks on the slow relaxation for the fractional Kuramoto model for synchronization},
ph {J. Math. Phys.}, {59}, 032702.
|
-
[35]  | G\orska, K., Horzela, A., Bratek, L., Dattoli, G., and Penson, K.A. (2018), {The Havriliak-Negami and its relatives}:
{the response, relaxation and probability density functions}, ph {J. Phys. A: Math. $\&$ Theor.}, {51}, 135202.
|
-
[36]  | Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., and Chen, Y.Q. (2018), {A new collection of real world applications of fractional
calculus in science and engineering}, ph {Comm. Nonlinear Sci. Numer. Simulat.}, {64}, 213-231.
|
-
[37]  | de Oliveira, E.C., Jarosz, S., and Vaz. Jr., J. (2019), {Fractional calculus via Laplace transform and its application in
relaxation processes}, ph {Comm. Nonlinear Sci. Numer. Simulat.}, {69}, 58-72.
|
-
[38]  | Mori, H. (1965), {A continued-fractionl representation of the time correlation function}, ph {Prog. Theor. Phys.}, {30}, 399-416.
|
-
[39]  | Zwanzig, R. (1961), ph{Lectures in Theoretical Physics}, Interscience, New York.
|
-
[40]  | Hilfer, R. (2000), in ph{Applications of Fractional Calculus in Physics}, ed. R. Hilfer (World Scientific, Singapore, 2000), p.87.
|
-
[41]  | Novikov, V.V., Wojciechowski, K.W., Komkova, O.A., and Thiels, T. (2005), ph{Anomalous relaxation in dielectrics. Equations with
fractional derivatives}, Materials Science-Poland, {23}, 977-984.
|
-
[42]  | Weron, K., Jurlewicz, A., and Magdziark, M. (2005), {Havriliak-Negami response in the framework of the continuous-time
random walk}, ph {Acta Phys. Pol. B}, {36}, 1855-1868.
|
-
[43]  | Jurlewicz, A., Weron, K., and Teuerle, M. (2008), {Generalized Mittag-Leffler relaxation}: ph{Clustering-jump continuous-time
random walk approach}, ph {Phys. Rev. E}, {78}, 011103.
|
-
[44]  | Khamzin, A.A., Nigmatullin, R.R., and Popov, I.I. (2014), {Justification of the empirical laws of the anomalous dielectric
relaxation in the framework of the memory function formalism}, ph {Frac. Cal. $\&$ Appl. Anal.}, {17}, 247-258.
|
-
[45]  | Pandey, S.C. (2017), {The Lorenzo-Hartleys function for fractional calculus and its applications pertaining to fractional
order modelling of anomalous relaxation in dielectrics}, ph {Comp. Appl. Math.}, DOI. 10.1007/s40314-017-0472-7.
|
-
[46]  | Gorenflo, R., Kilbas, A.A., Mainardi, F., and Rogosin, S.V. (2014), ph{Mittag-Leffler Functions, Related Topics and Applications},
Springer, Heildelberg.
|
-
[47]  | Camargo, R.F. and de Oliveira, E.C. (2015), ph{Fractional Calculus}, (in Portuguese), Editora Livraria da F\{\i}sica,
S\~ao Paulo.
|
-
[48]  | Gelfand, I.M. and Shilov, G.E. (1964), ph{Generalized Functions}, Vol. 1, Academic Press, New York.
|
-
[49]  | Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006), {Theory and Applications of Fractional Differential Equations}, ph {Elsevier}, Amsterdam.
|
-
[50]  | Mittag-Leffler, G.M. (1903), {Sur la nouvelle fonction $E_{\alpha}(x)$}, ph {C. R. Acad. Sci.}, {137}, 554-558.
|
-
[51]  | Bottcher, C.J.F. and Bordewijk, P. (1978), {Theory of Electric Polarization}, ph {Elsevier Sci. Publ.}, Amsterdam.
|
-
[52]  | Hanyga, A. and Seredynska, A. (2008), {On a mathematical framework for the constitutive equations of anisotropic dielectric
relaxation}, ph {J. Stat. Phys.}, {131}, 269-303.
|
-
[53]  | Havriliak Jr., S. and Negami, S. (1966), {A complex plane analysis of $\alpha$-dispersion in some polymer systems},
ph {J. Polymers Sci.}, {14}, 99-117.
|
-
[54]  | Frohlich, H. (1958), ph{Theory of Dielectrics}, Oxford University Press, London.
|
-
[55]  | Manning, M.F. and Bell, M.E. (1940), {Electrical conduction and related phenomena in solid dielectrics},
ph {Rev. Mod. Phys.}, {12}, 215-257.
|
-
[56]  | Willians, G. (1972), {Use of the dipole correlation function in dielectric relaxation}, ph {J. Chem. Rev.}, {77}, 55-69.
|
-
[57]  | Boon, J.P. and Yip, S. (1980), ph{Molecular Hydrodynamic}, Dover, New York.
|
-
[58]  | Giraldo, R.G.R., G\omez, A.R., and de Oliveira, E.C. (2020), ph{On the complete monotonicity of fractional relaxation
functions}, to be submitted for publication.
|