Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Time-averaged Potential for Molecular Ions in Three-Dimensional Radio Frequency Traps

Journal of Applied Nonlinear Dynamics 10(3) (2021) 471--477 | DOI:10.5890/JAND.2021.09.008

Semyon Rudyi , Yuri Rozhdestvensky

ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russia

Download Full Text PDF

 

Abstract

This study deals with distinctive features of forming an effective potential for molecular ions and diatomic structures in three-dimensional radio-frequency traps. A simple model is proposed, which demonstrates the transition from vibration dynamics of micro-motion and micro-rotation to the time-averaged pseudopotential and rotation potential. It shows the existence of equilibrium states of a dimer molecule, which determine the stable orientation of an ion within the space of a three-dimensional Paul ion trap. Stable states and orbits for symmetrical and asymmetrical configurations were found.

Acknowledgments

This study was supported by Theoretical Physics and Mathematics Advancement Foundation ``BASIS'' 19-1-5-136-1.

References

  1. [1]  Larson, D.J., Bergquist, J.C., Bollinger, J.J., Itano, W.M., and Wineland, D.J. (1986), Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma, { Physical review letters}, {57}, 70.
  2. [2]  Kielpinski, D., King, B., Myatt, C., Sackett, C., Turchette, Q., Itano, W.M., Monroe, C., Wineland, D.J., and Zurek, W. (2000), Sympathetic cooling of trapped ions for quantum logic, { Physical Review A}, {61}, 032310.
  3. [3]  Cetina, M., Grier, A.T., and Vuleti{\c}, V. (2012), Micromotion-induced limit to atom-ion sympathetic cooling in paul traps, { Physical review letters}, {109}, 253201.
  4. [4]  Eschner, J., Morigi, G., Schmidt-Kaler, F., and Blatt, R. (2003), Laser cooling of trapped ions, { JOSA B}, {20}, 1003-1015.
  5. [5]  Vuleti{\c}, V. and Chu, S. (2000), Laser cooling of atoms, ions, or molecules by coherent scattering, { Physical Review Letters}, {84}, 3787.
  6. [6]  Peik, E., Abel, J., Becker, T., VonZanthier, J., and Walther, H. (1999), Sideband cooling of ions in radio-frequency traps, { Physical Review A}, {60}, 439.
  7. [7]  Klosowski, L., Pleskacz, K., W{\o}jtewicz, S., Lisak, D., and Piwi{\n}ski, M. (2017), Optical system for doppler cooling of trapped calcium ions, { Photonics Letters of Poland}, {9}, 119-121.
  8. [8]  Gao, T., Hu, X., Li, Y., Tian, Z., Xie, Q., Chen, Q., Liang, Y., Luo, X., Ren, L., and Luo, J. (2017), Microstructural properties and evolution of nanoclusters in liquid si during a rapid cooling process. { JETP Letters}, {106}, 667-671.
  9. [9]  Schirber, M. (2019), Focus: Cooling on the negative side, { Physics}, {\bf 12}, 98.
  10. [10]  Crubellier, A. (1990), Theory of laser evaporative cooling of trapped negative ions. i. harmonically bound ions and {RF} traps, { Journal of Physics B: Atomic, Molecular and Optical Physics}, {23}, 3585-3607.
  11. [11]  Ejtemaee, S. and Haljan, P. (2017), 3d sisyphus cooling of trapped ions. { Physical review letters}, {119}, 043001.
  12. [12]  Chuah, B.L., Lewty, N.C., Cazan, R., and Barrett, M.D. (2013), Sub-doppler cavity cooling beyond the lamb-dicke regime, { Physical Review A}, {\bf 87}, 043420.
  13. [13]  Staanum, P.F., H{\o}jbjerre, K., Skyt, P.S., Hansen, A.K., and Drewsen, M. (2010) Rotational laser cooling of vibrationally and translationally cold molecular ions, { Nature Physics}, {6}, 271.
  14. [14]  Tong, X., Winney, A.H., and Willitsch, S. (2010), Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization, { Physical review letters}, {105}, 143001.
  15. [15]  Rosanov, N. and Vysotina, N. (2019), Dynamics of a diatomic molecule in a trap, { Journal of Experimental and Theoretical Physics}, {128}, 840-846.
  16. [16]  Nguyen, J.H., Viteri, C.R., Hohenstein, E.G., Sherrill, C.D., Brown, K.R., and Odom, B. (2011), Challenges of laser-cooling molecular ions. { New Journal of Physics}, {13}, 063023.
  17. [17]  Endres, E., Egger, G., Lee, S., Lakhmanskaya, O., Simpson, M., and Wester, R. (2017), Incomplete rotational cooling in a 22-pole ion trap, { Journal of Molecular Spectroscopy}, {332}, 134-138.
  18. [18]  Ros{\e}n, S., etal. (2000), Recombination of simple molecular ions studied in storage ring: dissociative recombination of h 2 o+. { Faraday discussions}, {115}, 295-302.
  19. [19]  Lewis, W.K., Applegate, B.E., Szt{\a}ray, J., Szt{\a}ray, B., Baer, T., Bemish, R.J., and Miller, R.E. (2004), Electron impact ionization in helium nanodroplets: Controlling fragmentation by active cooling of molecular ions, { Journal of the American Chemical Society}, {126}, 11283-11292.
  20. [20]  Vasilev, I., Kushchenko, O., Rudyi, S., and Rozhdestvenskii, Y.V. (2019), Effective rotational potential of a molecular ions in a plane radio-frequency trap, { Technical Physics}, {64}, 1379-1385.
  21. [21]  Ghosh, P.K. (1995), Ion traps.
  22. [22]  Ilja, I.B. (2003), { Vibrational Mechanics}, Allied Publishers.
  23. [23]  Shayak, B. and Vyas, P. (2017), Krylov bogoliubov type analysis of variants of the mathieu equation, { Journal of Applied Nonlinear Dynamics}, {6}, 57-77.
  24. [24]  Rudyi, S.S., Vovk, T.A., and Rozhdestvensky, Y.V. (2019), Features of the effective potential formed by multipole ion trap, { Journal of Physics B: Atomic, Molecular and Optical Physics}, {52}, 095001.