Journal of Applied Nonlinear Dynamics
Solitons Solutions of the Complex Ginzburg-Landau Equation with Saturation Term Using Painleve Truncated Approach
Journal of Applied Nonlinear Dynamics 10(2) (2021) 279--286 | DOI:10.5890/JAND.2021.06.007
P.H. Kamdoum-Tamo$^{1,2}$ , A. Kenfack-Jiotsa$^{1,2}$, T.C.
Kofane$^{1}$
$^{1}$ Laboratory of Mechanics, Department of Physics, Faculty of Sciences, and
African Center of
Excellence in I.C.T ( C.E.T.I.C ) University of
Yaounde I, P.O. Box 812, Yaounde, Cameroon
$^{2}$ Nonlinear Physics and Complex Systems Group, Department of
Physics, The Higher Teachers'
Training College, University of
Yaounde I, P.O. Box 47 Yaounde, Cameroon
Download Full Text PDF
Abstract
Considering the pulse ansatz, we
derive different classes of the modified complex Ginzburg-Landau
(MCGL) equation and we use the Painleve truncated approach to
construct the solitons solutions . We then present the importance
of the saturation term. The solutions obtained by the combined
methods are asymmetric- dark and bright solitons. Numerical
simulations are performed to show how the wave propagates. The
shape of solutions can be well controlled by adjusting the
parameters of the system.
References
-
[1]  | Cheng, J.B. and Geng, X.G. (2005), Algebro-geometric solution to the modified Kadomtsev-Petviashvili
equation, ph{J. Phys. Soc. Japan}, 74, 2217-2222.
|
-
[2]  | Geng, X.G., Dai, H.H., and Cao, C.W. (2003), Algebro-geometric constructions of the discrete
Ablowitz-Ladik flow and applications, ph{J. Math. Phys.},
44, 4573-4588.
|
-
[3]  | Lou, S.Y., Tang, X.Y., and Lin, J. (2001), Exact solutions of the coupled KdV
system via formally variable separation approach, ph{Commun.
Theor. Phys.}, 36, 145-148.
|
-
[4]  | Zhang, S.L., Lou, S.Y., and Qu, C.Z. (2006), The derivative-dependent functional variable separation
for the solving equations, ph{Chin. Phys.}, 15,
2765-2776.
|
-
[5]  | Kengne, E., Vaillancour, R., and Malomed, B.A. (2006), Coupled nonlinear Schr\"{o}dinger equationa for solitary-wave
kink signals propagating in discrete nonlinear dispersive
transmission lines, ph{Int. J. of Modern Phy. B.}, 23,
133-147.
|
-
[6]  | Li, D.S. and Zhang, H.Q. (2004), A new extended tanh-function method and its application to the
dispersive long wave equations in (2+1) dimensions, ph{Appl.
Math. Comput.}, 147, 789-797.
|
-
[7]  | Bekir, A. (2008), New solitons and periodic wave solutions for some nonlinear physical
models by using the sine-cosine method, ph{Phys. Scr.}, 77, 501-505.
|
-
[8]  | Mehdi, D. and Fatemeh, S. (2007), Solution of a partial differential equation subject to
temperature overspecification by Hes homotopy perturbation method, ph{Phys. Scr.}, 75, 778-787.
|
-
[9]  | Hirota, R. (1971), Exact solution of the Korteweg-de-Vries equation for multiple collisions of solitons,
ph{Phys. Rev. Lett.}, 27, 1192-1194.
|
-
[10]  | Zayed, E.M.E. and Abdelaziz, M.A.M. (2011), Exact solutions for the nonlinear Schr\"{o}dinger equation
with variabe coefficients using the generalized extended
tanh-function, the sine-cosine and the exp-function methods,
ph{Appl. Math. Comput.}, 218, 2259-2268.
|
-
[11]  | Kudryashov, N.A. (2012), One method for finding exact solutions of nonlinear differential equations, ph{commun. Nonlinear
Sci. Numer. Simulat.}, 17, 2248-2253.
|
-
[12]  | Zayed, E.M.E., Moatimid, G.M., and
Al-Nowehy Abdul-Ghani A.A. (2015), The generalized Kudryashov
method andits applicationsfor solving nonlinear PDEs in
mathematical physics, ph{Scientific J. Math. Res.}, 5,
19-39.
|
-
[13]  | Moatimid, G.M., El-Shiekh Rehad, M.,
and Al-Nowehy Abdul-Ghani A.A. (2013), Exact solutions for
Calegero-Bogoyavlenskii-Schiff equation using symmetry mthod,
ph{Appl. Math. comput.}, 220, 455-462.
|
-
[14]  | Moussa, M.H.M. and El-Schiek Rehab, M. (2006), Similarity reduction and similarity solutions of Zabolotskay-Khoklov
equatio with a dissipative term via symmetry method, ph{Physica
A}, 371, 325-335.
|
-
[15]  | Biswas, A., Milovic, D., and Edwards, M. (2010), ph{Mathematical Theory of Dispersion-Managed Optical
Solitons}, Springer-Verlag, New York.
|
-
[16]  | Sarma, A.K., Saha, M., and Biswas, A. (2010), Optical solitons with power law nonlinearity and hamiltonian
perturbation: an exact solution, ph{J. Infrared Milli.
Terahertz Waves}, 31, 1048-1056.
|
-
[17]  | Tsigaridas, G., Fragos, A., Polyzos, I., Fakis, M., Ioannou, A.,
Giannetas, V., and Persephonis, P. (2005), Evolution of
near-soliton initial conditions in non-linear wave equations
through their B\"{a}cklund transforms, ph{Chaos Solitons Fract.},
23, 1841-1854.
|
-
[18]  | Wang, M., Li, X., and Zhang, J. (2008), The $(G/G)$-expansion method and travelling wave solutions of
nonlinear evolution equations in mathematical physics, ph{Phys.
Lett. A}, 372, 417-423.
|
-
[19]  | Vakhnenko, V.O., Parkes, E.J., and Morrison, A.J. (2003), A B\"{a}cklund transformation and the inverse
scattering transform method for the generalised Vakhnenko
equation, ph{chaos solitons Fractals}, 17, 683-692.
|
-
[20]  | Mohamadou, A., Ndzana II, F., and Kofan\{e}, T.C. (2006), Pulse solution of the modified
cubic complex Ginzburg-Landau equation, ph{Phys. Scr.}, 73, 596-600.
|
-
[21]  | Yomba, E. and Kofan\{e} T.C. (1996), On exact solutions of the generalized modified complex Ginzburg-Landau equation using
the Weiss-Tabor-Carnevale method, ph{Phys. Scr.}, 54,
576-580.
|
-
[22]  | Yomba, E. and Kofan\{e} T.C. (1999), On exact solutions of the modified complex Ginzburg-Landau equation,
ph{Physica D}, 125, 105-122.
|