Journal of Applied Nonlinear Dynamics
Dynamics of $K^{th}$ Order Rational Difference Equation
Journal of Applied Nonlinear Dynamics 10(1) (2021) 125--149 | DOI:10.5890/JAND.2021.03.008
Mohammad Saleh , A. Asad
Department of Mathematics, Birzeit University,
West Bank
Download Full Text PDF
Abstract
In this paper we will
investigate the dynamical behavior of the following rational
difference equation
\begin{equation}
x_{n+1}= \frac{\alpha + \beta x_{n} + \gamma x_{n-k}} {A +B x_{n}
+ C x_{n-k}},\quad n=0,1,...
\end{equation}
where the parameters $\alpha, \beta, \gamma$ and A, B, C and
the initial conditions $x_{-k},\dots,x_{-1},x_{0}$ are
non-negative real numbers, and the denominator is nonzero.
Our concentration here, is on the global stability, the
periodic character, the analysis of semi-cycles and the invariant
intervals of
the positive solution of the above equation.
It is worth mentioning that our difference equation is the general
case of the rational equation which is studied by Kulenovic and
Ladas in their monograph ( Dynamics of Second Order Rational
Difference Equation with Open Problems and Conjectures,
2002 ).
References
-
[1]  | Kulenovic, M.R.S. and Ladas, G. (2002), Dynamics of Second Order
Rational Difference Equations With Open Problems and Conjectures.
|
-
[2]  | Yan, X.X., Li, W.T., and Zhao, Z. (2006), Global asymptotic stability
for a higher order nonlinear rational difference equations,
Appl.
Math. Comput., 182, 1819-1831.
|
-
[3]  | Devault, R., Kosmala, W., Ladas, G., and Schuults, S.W. (2001), Global
Behavior, of $y_{n+1}=\frac{p+y_{n-k}}{q y_{n}+y_{n-k}}$,
Nonlinear Analysis, 47, 4743-4751.
|
-
[4]  | Dehghan, M., Sebdani, R.M. (2006), Dynamics of a higher-order
rational difference equation, Appl. Math. Comput.,
178, 345-354.
|
-
[5]  | Dehghan, M. and Douraki, M.J. (2005), Dynamics of a rational
difference equation using both theoretical and computational
approaches, Appl. Math. Comput., 168, 756-775.
|
-
[6]  | Saleh, M. and Abu-Baha, S. (2006), Dynamics of higher order
Rational Difference Equation, App. Math. Comp.,
181, 84-102.
|
-
[7]  | Saleh, M., Alkoumi, N., and Farhat, A. (2017), ph{On the dynamics of a rational difference equation $
x_{n+1}=\frac{ \alpha +\beta x_{n}+\gamma
x_{n-k}}{Bx_{n}+Cx_{n-k}}$},
Chaos and Soliton, 76-84.
|
-
[8]  | Saleh, M. and Aloqeili, M. (2005), On the rational difference
equation $ y_{n+1}=A + \frac{y_{n-k}}{y_{n}}$,
Appl. Math. Comput., 171, 862-869.
|
-
[9]  | Li, W.T. and Sun, H.R. (2005), Dynamics of a rational difference
equation, Appl. Math. Comput., 163, 577-591.
|
-
[10]  | Saleh, M. and Aloqeili, M. (2006), On the rational difference
equation $ y_{n+1}=A + \frac{y_{n}}{y_{n-k}}$,
Appl. Math. Comput., 177, 189-193.
|
-
[11]  | Salas Einarhille, S.L. (1982), Calculus One and Several
Variables, fourth edition.
|
-
[12]  | Douraki, M.J., Dehghan, M., and Razzaghi, M. (2005), The qualitative behavior of
solutions of nonlinear difference equation
Appl. Math. Comput., 170, 485-502.
|
-
[13]  | Elaydi, S. (2000), Discrete Chaos, Springer-Newyork.
|
-
[14]  | Sebdani, R.M. and Dehghan, M. (2006), The study of a class of
rational difference equation, Appl. Math. Comput.,
179, 98-107.
|
-
[15]  | Camouzis, E. and Ladas, G. (2007), Dynamics of Third-Order Rational
Difference Equations With Open Problems and Conjectures.
|
-
[16]  | Dehghan, M. and Sebdani, R.M. (2006), On the recursive sequence
$x_{n+1}=\frac{a+b x_{n-k+1}}{A+Bx_{n-k+1}+Cx_{n-2k+1}}$,
Appl. Math. Comput.,
178, 273-286.
|
-
[17]  | Douraki, M.J., Dehghan, M., and Razzaghi, M. (2006), Global behavior of
the difference equation $x_{n+1}=\frac{x_{n-l+1}}{1+a0x_{n}+a1x_{n-1}+\dots+alx_{n-l}+x_{n-l+1}}$, Article in press.
|
-
[18]  | Elaydi, S. (2005), An Introduction to Difference Equations
, third edition.
|
-
[19]  | Farhat, A. (2007), Dynamics Of Some Rational Nonlinear
Difference Equations, Master thesis, Birzeit University.
|
-
[20]  | Grove, E.A. and Ladas, G. (2005), Periodicities in Nonlinear Difference
Equations.
|
-
[21]  | He, W.S., Li, W.T., and Yan, X.X. (2004), Global attractivity of
the difference equation
$x_{n+1}=\alpha+\frac{x_{n-k}}{x_{n}}$,
Appl. Math. Comput., 151,
879-885.
|
-
[22]  | Saleh, M. and Aloqeili, M. (2005), On the rational difference
equation $y_{n+1}= A + \frac{y_{n-k}}{y_{n}}$,
Appl. Math.
Comp., 171862-869.
|
-
[23]  | Saleh, M. and Farhat, A. (2017),{Global Asymptotic Stability of the Higher Order Equation
$x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{A+Bx_{n-k}}$}, ph {J. Appl. Math. Comput.}, 135-148, DOI 10.1007/s12190-016-1029-4.
|
-
[24]  | Jafar, J. and Saleh, M. (2018), {Dynamics of nonlinear difference equation
$x_{n+1} = \frac{ \beta x_{n}+\gamma x_{n-k}}{A+Bx_{n}+Cx_{n-k}}$}, ph {J. Appl. Math. Comput.}, 493-524.
|
-
[25]  | Abu Alhalawa M. and Saleh, M. (2017), ph{Dynamics of higher order rational difference equation
$x_{n+1} = \frac{\alpha +\beta x_{n}}{A+Bx_{n}+x_{n-k}}$},
Int. J. Nonlinear Anal. Appl., 363-379.
|
-
[26]  | Sebdani, R.M. and Dehghan, M. (2006), Global stability of
$y_{n+1}=\frac{p + q y_{n}+ry_{n-k}}{1+y_{n}}$,
Appl. Math. Comput., 182, 621-630.
|
-
[27]  | Sebdani, R.M. and Dehghan, M. (2006), Dynamics of a non-linear
difference equation,
Appl. Math. Comput., 178, 250-261.
|
-
[28]  | Zayed, E.M.E. and El-Moneam, M.A. (2006), On the Rational Recursive
Sequence, Egypt.
|