Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Moderate Gain Luenberger-Like Observer for Lipschitz Nonlinear Dynamics

Journal of Applied Nonlinear Dynamics 9(4) (2020) 551--566 | DOI:10.5890/JAND.2020.12.003

Sergio B. Cunha

Department of Mechanical Engineering, UERJ- Rio de Janeiro State University, Rio de Janeiro, 20550-900, Brazil

Download Full Text PDF

 

Abstract

Nonlinear systems state estimation has been an active research topic for some decades, since most nonlinear dynamics control algorithms require complete knowledge of the dynamic states and measuring all the states is often unfeasible. This note reviews former results and introduces a new methodology for determining the gains of a Luenberger-like observer employed with Lipschitz nonlinear dynamics. Some examples are presented to illustrate the use of the proposed algorithm and to compare it to recent solutions. This new methodology results in lower gains and enables the designer to determine the eigenvalues of the linear observer. It is shown that if the dynamics are in canonical form, this methodology can cope with a Lipschitz constant of any value.

References

  1. [1]  Krener, A.J. and Isidori, A. (1983), Linearization by output injection and nonlinear observers, Systems $&$ Control Letters, 3, 47-52.
  2. [2]  Baumann, W.T. and Rugh, W.J. (1986), Feedback control of nonlinear systems by extended linearization, IEEE Transactions on Automatic Control, AC-31(1), 40-46.
  3. [3]  Zeitz, M. (1987), The extended Luenberger observer for nonlinear systems, Systems $&$ Control Letters, 9, 149-156
  4. [4]  Slotine, J.J.E., Hedrick, J.K., and Misawa, E.A. (1987), On sliding observers for nonlinear systems, ASME Journal of Dynamic Systems, Measurement and Control, 109, 245-252.
  5. [5]  Khalil, H.K. and Praly, L. (2013), High-gain observers in nonlinear feedback control, International Journal of Robust and Nonlinear Control, 24(6), 993-1015.
  6. [6]  Gauthier, J.P., Hammouri, H., and Othman, S. (1992), A simple observer for nonlinear systems applications to bioreactors, IEEE Transactions on Automatic Control, 37, 875-880.
  7. [7]  Kou, S.R., Elliott, D.L., and Tarn, T.J. (1975), Exponential observers for nonlinear dynamic systems, Information and Control, 29, 204-216.
  8. [8]  Thau, F.E. (1973), Observing the state of non-linear dynamic systems, nternational Journal of Control, 17(3), 471-479.
  9. [9]  Zak, S.H. (1990), On the stabilization and observation of nonlinear/uncertain dynamic systems, IEEE Transactions on Automatic Control, 35(5), 604- 607.
  10. [10]  Ekramian, M., Hosseinnia, S., and Sheikholeslam, F. (2013), General framework in designing Luenberguer-like non-linear observer, IET Control Theory and Applications, 7(2), 253-270.
  11. [11]  Rajamani, R. (1998), Observers for Lipschitz nonlinear systems, IEEE Transactions on Automatic Control, 43(3), 397-401.
  12. [12]  Raghavan, S. and Hedrick, J.K. (1994), Observer design for a class of nonlinear systems, International Journal of Control, 59, 515-528.
  13. [13]  Phanomchoeng, G. and Rajamani, R. (2010), Observer design for Lipschitz nonlinear systems using Riccati equations, American Control Conference, Baltimore, MD.
  14. [14]  Song, B. and Hedrick, J.K. (2011), Nonlinear observer design for Lipschitz nonlinear systems, American Control Conference, San Francisco, CA.
  15. [15]  Zemouche, A. and Boutayeb, M. (2013), On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica, 49, 585-591.
  16. [16]  Ciccarella, G., Dalla Mora, M., and Germani, A. (1993), A Luenberger-like observer for nonlinear systems, International Journal of Control, 57(3), 537-556.
  17. [17]  Alessandri, A. and Rossi, A. (2013), Time-varying increasing-gain observers for nonlinear systems, Automatica, 49, 2845-2852.
  18. [18]  Arcak, M. and Kokotovic, P. (2001), Observer-based control of systems with slope-restricted nonlinearities, IEEE Transactions on Automatic Control, 46(7), 1146-1150.
  19. [19]  A\c{c}\i kme\c{s}e, B. and Corless M. (2011), Observers for systems with nonlinearities satisfying incremental quadratic constraints, Automatica, 47, 1339-1348.
  20. [20]  Ibrir, S. (2009), LPV approach to continuous and discrete nonlinear observer design, Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shangai, P.R. China.
  21. [21]  Pertew, A.M., Marquez, H.J., and Zhao, Q. (2005), Dynamic observers for nonlinear Lipschitz systems, IFAC 16th World Congress. Prague, Czech R.
  22. [22]  Howell, A. and Hedrick, J.K. (2002), Nonlinear observer design via convex optimization, American Control Conference, Anchorage, AK.
  23. [23]  Slotine, J.J.E. and Li, W. (1991), Applied nonlinear control, Prentice Hall.
  24. [24]  Khalil, H.K. (1996), Nonlinear systems, 2$^{\rm nd}$ ed., Prentice Hall.
  25. [25]  Apostol, T.M. (1965), Mathematical Analysis, Addison-Wesley.
  26. [26]  Lang, S. (1969), Analysis I, Addison-Wesley.
  27. [27]  Zielk, G. (1988), Some remarks on matrix norms, condition numbers and error estimates for linear equations, Linear Algebra and its Applications, 110, 29-41.
  28. [28]  Ekramian, M., Hosseinnia, S., and Sheikholeslam, F. (2011), Observer design for non-linear systems based on a generalized Lipschitz condition, IET Control Theory and Applications, 5(2), 1813-1818.
  29. [29]  Trumper, D.L., Olson, S.M., and Subrahmanyan, P. K. (1997), Linearizing control of magnetic suspension systems, IEEE Transactions on Automatic Control, 5(4), 427-438.
  30. [30]  Cho, D. and Hedrick, J.K. (1989), Automotive powertrain modeling for control, ASME Journal of Dynamic Systems, Measurement and Control, 111, 569-576.