Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


A Coordinate Wise Variational Method with Tolerance Functions

Journal of Applied Nonlinear Dynamics 9(4) (2020) 541--549 | DOI:10.5890/JAND.2020.12.002

Salahuddin

Department of Mathematics, Jazan University, Jazan-45142, Kingdom of Saudi Arabia

Download Full Text PDF

 

Abstract

In this work, we use the coordinate wise variational method for optimal resource allocation problems with involve simplex type constraints. It consists in making coordinate wise steps together with special threshold control and tolerance whose values reduce sequentially, and we establish the convergence rate under mild conditions.

Acknowledgments

The author thanks the anonymous referees for their careful reading and insightful suggestions.

References

  1. [1]  Blum, E. and Oettli, W. (1994), From optimization and variational inequalities to equilibrium problems, Math. Stud., 63, 123-144.
  2. [2]  Ahmad, M.K. and Salahuddin (2006), Perturbed three step approximation process with errors for a general implicit nonlinear variational inequalities, Int. J. Math. Math. Sci., Article ID 43818, 1-14.
  3. [3]  Ahmad, M.K. and Salahuddin, (2012), A stable perturbed algorithms for a new class of generalized nonlinear implicit quasi variational inclusions in Banach spaces, Adv. Pure Math., 2(2), 139-148.
  4. [4]  Bertsekas, D.P. and Tsitsiklis, J.N. (1989), Parallel and distributed computation: numerical methods, Prentice Hall, London.
  5. [5]  Konnov, I.V. (2007), Equilibrium models and variational inequalities, Elsevier Amsterdam.
  6. [6]  Konnov, I.V. and Salahuddin, (2017), Two-level iterative method for non-stationary mixed variational inequalities, Russ. Math., 61(10), 44-53.
  7. [7]  Konnov, I.V. Selective bi-coordinate variations for resource allocation type problems, SSRN paper No. 2519662, 17-pages, avaailabe on SSRN:http://ssrn.com/abstract=2519642.
  8. [8]  Patriksson, M. (2008), A survey on the continuous nonlinear resource allocation problems, Eur. J. Oper. Res. 185(1), 1-46.
  9. [9]  Cevher, V., Becker, S., and Schmidt, M. (2014), Convex optimization for big data signal process, Maggz. 31(5), 32-43.
  10. [10]  Burges, C.J.C. (1998), A tutorial on support vector mechanism for pattern recognition, Data Mining Know Disc, 2(2), 121-167.
  11. [11]  Tseng, P. and Yun, S. (2010), A coordinate gradient method for linearly constrained smooth, optimization and support machines traning, J. Comput. Optim. Appl., 47(2), 179-206.
  12. [12]  Konnov, I.V. (2016), A method of bi-coordinate variation with tolerence and its convergence, Russ. Mathematics (Iz. VUZ) 60(1), 68-72.
  13. [13]  Beck, A. (2014), A 2-coordinate descent method for solving double sided simplex constrainted minimization problems, J. Optim. Theo. Appl., 162(3), 892-919.
  14. [14]  Konnov, I.V. (2013), Nonlinear optimization and variational inequalities, Kazan Universities Press, Kazan.
  15. [15]  Demyanov, V.F. and Rubinov, V.F. (1968), Approximate methods for solving extremum problems, Lenigrad Univ. Press, Leningrad.
  16. [16]  Levitin, E. S. and Polyak, B. T. (1966), Constrained minimization method, USSR Comput. Math. Math. Phys., 6(5), 1-50.
  17. [17]  Polyak, B.T. (1983), Introduction to optimization, Nauka, Moscow.