Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


A General Method for Fractional-Integer Order Systems Synchronization

Journal of Applied Nonlinear Dynamics 9(2) (2020) 165--173 | DOI:10.5890/JAND.2020.06.001

Fareh Hannachi

Larbi Tebessi University - Tebessa, Algeria

Download Full Text PDF

 

Abstract

This paper investigates different type of synchronization between fractional-order (chaotic, hyperchaotic) systems and integer-order (chaotic, hyperchaotic) systems. Based on the idea of the decomposition of the controller in the response system in two sub-controllers and the stability theory of the linear integer-order system, we design the effective controller to realize the synchronization, Antisynchronization, function projective synchronization, inverse function projective synchronization between fractional-order and integer-order systems. Finally, the fractional-order L¨u’s system and the Lorenz system of integer order are used to demonstrate the effectiveness of the proposed method with numerical simulation.

References

  1. [1]  Pecora, L. and Carroll, T. (1990), Synchronization in chaotic systems, Physical Review Letters, 64, 821-824.
  2. [2]  Grebogi, C. and Lai, Y.C. (1997), Controlling chaotic dynamical systems, Systems and control letters, 31, 307-312.
  3. [3]  Ho, M.C. and Hung, Y.C. (2002), Synchronization of two different systems by using generalized active control, Physics Letters A, 301, 424-428.
  4. [4]  Sun, J., Shen, Y., Wang, X., and Chen, J. (2014), Finitetime combination-combination synchronization of four dierent chaotic systems with unknown parameters via sliding mode control, Nonlinear Dynamics, 76, 383-397.
  5. [5]  Wu, X. and Lu, J. (2003), Parameter identification and backstepping control of uncertain Lu system Chaos, Solitons and Fractals, 18, 721-729.
  6. [6]  Wang, F. and Liu, C. (2007), Synchronization of unified chaotic system based on passive controlPhysica D: Nonlinear Phenomena, 225, 55-60.
  7. [7]  Zimmermann, H.J. (1996), Fuzzy control, In Fuzzy Set Theory and Its Applications, Springer: Dordrecht
  8. [8]  Adloo, H. and Roopaei, M. (2011), Review article on adaptive synchronization of chaotic systems with unknown parameters, Nonlinear Dynamics, 65, 141-159.
  9. [9]  Mainieri, R. and Rehacek, J. (1999), Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82, 3042.
  10. [10]  Du, H., Zeng, Q. and Wang, C. (2008), Function projective synchronization of different chaotic systems with uncertain parameters, Physics Letters A, 372, 5402-5410.
  11. [11]  Petráš, I. (2011), Fractional-order chaotic systems, In Fractional-order nonlinear systems, Springer: Berlin.
  12. [12]  Lu, J.G. and Chen, G. (2006), A note on the fractional-order Chen system, Chaos, Solitons and Fractals, 27, 685-688.
  13. [13]  Li, C. and Chen, G. (2004), Chaos in the fractional order Chen system and its control, Chaos, Solitons and Fractals, 22, 549-554.
  14. [14]  Li, C. and Chen, G. (2004), Chaos and hyperchaos in the fractional-order Rössler equations, Physica A: Statistical Mechanics and its Applications, 341, 55-61.
  15. [15]  Pham, V.T., Kingni, S.T., Volos, C., Jafari, S., and Kapitaniak, T. (2017), A simple three-dimensional fractional-order chaotic system without equilibrium: Dynamics, circuitry implementation, chaos control and synchronization, AEU-International Journal of Electronics and Communications, 78, 220-227.
  16. [16]  Ouannas, A., Ziar, T., Azar, A.T., and Vaidyanathan, S. (2017), A new method to synchronize fractional chaotic systems with different dimensions, In Fractional Order Control and Synchronization of Chaotic Systems, Springer: Cham.
  17. [17]  Chen, D., Wu, C., Iu, H.H., and Ma, X. (2013), Circuit simulation for synchronization of a fractional-order and integer-order chaotic system, Nonlinear Dynamics, 73, 1671-1686.
  18. [18]  Xu, Y., Wang, H., Li, Y., and Pei, B. (2014), Image encryption based on synchronization of fractional chaotic systems, Communications in Nonlinear Science and Numerical Simulation, 19, 3735-3744.
  19. [19]  Sheu, L.J. (2011), A speech encryption using fractional chaotic systems, Nonlinear dynamics, 65, 103-108.
  20. [20]  Yin, C., Dadras, S., Zhong, S.M., and Chen, Y. (2013), Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach, Applied Mathematical Modelling, 37, 2469-2483.
  21. [21]  Yin, C., Zhong, S.M., and Chen, W.F. (2012), Design of sliding mode controller for a class of fractional-order chaotic systems, Communications in Nonlinear Science and Numerical Simulation, 17, 356-366.
  22. [22]  Chen, D.Y., Liu, Y.X., Ma, X.Y., and Zhang, R.F. (2012), Control of a class of fractional-order chaotic systems via sliding mode, Nonlinear Dynamics, 67, 893-901.
  23. [23]  Muthukumar, P., Balasubramaniam, P., and Ratnavelu, K. (2017), Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem, International Journal of Dynamics and Control, 5, 115-123.
  24. [24]  Bhalekar, S. and Daftardar-Gejji, V. (2010), Synchronization of different fractional order chaotic systems using active control, Communications in Nonlinear Science and Numerical Simulation, 15, 3536-3546.
  25. [25]  Agrawal, S.K., Srivastava, M., and Das, S. (2012), Synchronization of fractional order chaotic systems using active control method, Chaos, Solitons and Fractals, 45, 737-752.
  26. [26]  Huang, C. and Cao, J. (2017). Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system, Physica A: Statistical Mechanics and its Applications, 473, 262-275.
  27. [27]  Zhou, P. and Zhu, W. (2011), Function projective synchronization for fractional-order chaotic systems, Non- linear Analysis: Real World Applications, 12, 811-816.
  28. [28]  Wang, X., Zhang, X., and Ma, C. (2012), Modified projective synchronization of fractional-order chaotic systems via active sliding mode control, Nonlinear Dynamics, 69, 511-517.
  29. [29]  Wang, S., Yu, Y., and Diao, M. (2010), Hybrid projective synchronization of chaotic fractional order systems with different dimensions, Physica A: Statistical Mechanics and its Applications, 389, 4981-4988.
  30. [30]  Chen, D., Zhang, R., Sprott, J.C., and Ma, X. (2012), Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control, Nonlinear Dynamics, 70, 1549-1561.
  31. [31]  Gang-Quan, S., Zhi-Yong, S., and Yan-Bin, Z. (2011), A general method for synchronizing an integer-orderchaotic system and a fractional-order chaotic system, Chinese Physics B, 20, 080505.
  32. [32]  Yang, L.X., He, W.S., and Liu, X.J. (2011), Synchronization between a fractional-order system and an integer order system, Computers and Mathematics with Applications, 62, 4708-4716.
  33. [33]  Chen, D., Zhang, R., Sprott, J.C., Chen, H., and Ma, X. (2012), Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control, Chaos: An Interdis- ciplinary Journal of Nonlinear Science, 22, 023130.
  34. [34]  Hannachi, F. (2019), A general robust method for the synchronization of fractional-integer-order 3-D continuous-time quadratic systems, International Journal of Dynamics and Control, 1-7.
  35. [35]  Podlubny, I. (1998), Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier.
  36. [36]  Ouannas, A., Abdelmalek, S., and Bendoukha, S. (2017), Coexistence of some chaos synchronization types in fractional-order differential equations, Electronic Journal of Differential Equations, 2017, 1804-1812.
  37. [37]  Hahn, W. (1967), Stability of motion, Springer: Berlin.