Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


On New Generalized Hybrid Synchronization in Chaotic and Hyperchaotic Discrete-time Dynamical Systems

Journal of Applied Nonlinear Dynamics 8(3) (2019) 435--445 | DOI:10.5890/JAND.2019.09.007

Adel Ouannas$^{1}$, Lotfi Jouini$^{1}$, Okba Zehrour$^{2}$

$^{1}$ Departement of Mathematics and Computer Sciences, University of Larbi Tebessi, Tebessa, 12002 Algeria

$^{2}$ Departement of Mathematics and Computer Sciences, University of Larbi Ben M’hidi, Oum El Bouaghi, Algeria

Download Full Text PDF

 

Abstract

In this paper, by combining full state hybrid projective synchronisation (FSHPS) and inverse full state hybrid projective synchronisation (IFSHPS), we generalize the idea of hybrid chaos synchronization in discrete-time. Based on stability theory of linear discrete-time systems and Lyapunov stability theory, new approaches are proposed to investigate the new type of hybrid synchronization between chaotic maps of different dimensions. Several numerical examples have highlighted the effectiveness of the novel approaches developed herein.

References

  1. [1]  Rocha, J.L., Aleixo, S., and Caneco, A. (2014), Synchronization in Richards’ chaotic systems, Journal of Applied Nonlinear Dynamics, 3(2), 115-130.
  2. [2]  Ojo, K.S., Njah, A.N., and Olusola, O.I. (2016), Generalized combination-combination synchronization of chaos in identical orders chaotic systems, Journal of Applied Nonlinear Dynamics, 5(1), 43-58.
  3. [3]  Rafikova, E., Rafikov, M., and Rinaldo, G. (2016), Synchronization of the mobile robot to a chaotic trajectory, Journal of Applied Nonlinear Dynamics, 5(3), 325-335
  4. [4]  Hénon, M. (1976), A two dimensional mapping with a strange attractor, Communication In Mathematical Physics, 50, 69-76.
  5. [5]  Lozi, R. (1978), Un attracteur étrange du type attracteur de Hénon, Journal of Physics, 9, 9-10.
  6. [6]  Itoh, M., Yang, T., and Chua, L.O. (2001), Conditions for impulsive synchronization of chaotic and hyperchaotic systems, International Journal of Bifurcation and Chaos, 11, 551.
  7. [7]  Yan, Z.Y. (2005), Q-S synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller, Physics Letters A, 342, 309-317.
  8. [8]  Zhang, W.B. (2006), Discrete dynamical systems, bifurcations, and chaos in economics. Elsevier, Boston.
  9. [9]  Filali, R.L., Benrejeb, M., and Borne, P. (2014), On observer-based secure communication design using discrete-time hyperchaotic systems, Communications in Nonlinear Science and Numerical Simulation, 19, 1424-1432.
  10. [10]  Ouannas, A. (2014), A new chaos synchronization criterion for discrete dynamical systems, Applied Mathematical Sciences, 8(41), 2025-2034.
  11. [11]  Ouannas, A. (2014), Some synchronization criteria for N-dimensional chaotic systems in discrete-Time, Journal of Advanced Research in Applied Mathematics, 6(4), 1-10.
  12. [12]  Ouannas, A. (2014), A synchronization criterion for a class of sinusoidal chaotic maps via linear controller, International Journal of Contemporary Mathematical Sciences, 9(14), 677-683.
  13. [13]  Ouannas, A. (2015), A new synchronization scheme for general 3D quadratic chaotic systems in discrete-time, Nonlinear Dynamics and Systems Theory, 15(2), 163-170.
  14. [14]  Ouannas, A., Odibat, Z., and Shawagfeh, N. (2017), Universal chaos synchronization control laws for general quadratic discrete systems, Applied mathematical modeling, 45, 636-641.
  15. [15]  Aguilar Bustos, A.Y. and Cruz Hernández, C. (2009), Synchronization of discrete-time hyperchaotic systems: An apllication in communications, Chaos, Solitons and Fractals, 41(3), 1301-1310.
  16. [16]  Cruz Hernández, C., Lopez Gutierrez, R.M., Aguilar Bustos, A.Y., and Posadas Castillo, Y.C. (2010), Communicating encrypted information based on synchronized hyperchaotic maps, Communications in Nonlinear Sciences and Numerical Simulation, 11(5), 337-349.
  17. [17]  Ouannas, A. (2015), Synchronization criterion for a class of N-dimensional discrete chaotic systems, Journal of Advanced Research in Dynamical and Control Systems, 7(1), 82-89.
  18. [18]  Filali, R.L., Hammami, S., Benrejeb, M., and Borne, P. (2012), On synchronization, anti-synchronization and hybrid synchronization of 3D discrete generalized Hénon map, Nonlinear Dynamics and Systems Theory, 12(1), 81-95.
  19. [19]  Grassi, G. and Miller, D.A. (2007), Projective synchronization via a linear observer: application to time-delay, continuous-time and discrete-time systems, International Journal of Bifurcation and Chaos, 17, 1337-1342.
  20. [20]  Jin, Y., L, Xin, and Chen, Y. (2008), Function projective synchronization of discrete-time chaotic and hyperchaotic systems using backstepping method, Communications in Theoritical Physics, 50, 111-116.
  21. [21]  Li, Y. and Tianyan, D. (2010), Adaptive control for anticipated function projective synchronization of 2D discrete-time chaotic systems with uncertain parameters, Journal of Uncertain Systems, 4, 195-205.
  22. [22]  An, H.L. and Chen, Y. (2009), The function cascade synchronization scheme for discrete-time hyperchaotic systems, Communications in Nonlinear Science and Numerical Simulation, 14, 1494-1501.
  23. [23]  Ouannas, A. (2014), On full-state hybrid projective synchronization of general discrete chaotic systems, Journal of Nonlinear Dynamics, 2014, 1-6.
  24. [24]  Ouannas, A. and Grassi, G. (2016), Inverse full state hybrid projective synchronization for chaotic maps with different dimensions, Chiness Physics B, 25(9), 090503-6.
  25. [25]  Ouannas, A. and Abu-Saris, R. (2015), On matrix projective synchronization and inverse matrix projective synchronization for different and identical dimensional discrete-time chaotic systems, Journal of Chaos, 2015, Article ID 4912520, pp. 1-7.
  26. [26]  Ouannas, A. and Mahmoud, E.E. (2014), Inverse matrix projective synchronization for discrete chaotic systems with different dimensions, Journal of Computational Intelligence and Electronic Systems, 3(3), 188- 192.
  27. [27]  Ouannas, A., Odibat, Z., and Shawagfeh, N. (2016), A new Q-S synchronization results for discrete chaotic systems, Differential Equations and Dynamical Systems, 1-10, DOI:10.1007/s12591-016-0278-x.
  28. [28]  Ouannas, A. (2013), A new Q-S synchronization scheme for discrete chaotic systems, Far East Journal of Applied Mathematics, 84(2), 89-94.
  29. [29]  Ouannas, A. and Odibat, Z. (2015), Generalized synchronization of different dimensional chaotic dynamical systems in discrete time, Nonlinear Dynamics, 81, 765-771.
  30. [30]  Ouannas, A. (2015), A new generalized-type of synchronization for discrete-time chaotic dynamical systems, Journal of Computational and Nonlinear Dynamic, 10, 061019-5.
  31. [31]  Ouannas, A. and Al-sawalha, M.M. (2015), A new approach to synchronize different dimensional chaotic maps using two scaling matrices, Nonlinear Dynamics and Systems Theory, 15, 400-408.
  32. [32]  Ouannas, A., Azar, A.T., and Abu-Saris, R. (2016), A new type of hybrid synchronization between arbitrary hyperchaotic maps, Intenational journal of Learning Machin and Cybernitic, 1-8, DOI:10.1007/s13042-016- 0566-3.
  33. [33]  Ouannas, A. (2016) , Co-existence of various synchronization-types in hyperchaotic maps, Nonlinear Dynamics and Systems Theory, 16(3), 312-321.
  34. [34]  Ouannas, A. and Grassi, G. (2016), A new approach to study co-existence of some synchronization types between chaotic maps with different dimensions, Nonlinear Dynamics, 86(2), 1319-1328.
  35. [35]  Ouannas, A., Azar, A.T., and Vaidyanathan, S. (2017), New hybrid synchronization schemes based on coexistence of various types of synchronization between master-slave hyperchaotic systems, International Journal of Computer Applications in Technology, 55(2), 112-120.
  36. [36]  Ouannas, A., Azar, A.T., and Vaidyanathan, S. (2017), New hybrid synchronization schemes based on coexistence of various types of synchronization between master-slave hyperchaotic systems, International Journal of Computer Applications in Technology, 55(2), 112-120.
  37. [37]  Ouannas, A., Abdelmalek, S., and Bendoukha, S. (2017), Coexistence of some chaos synchronization types in fractional-order differential equations, Electronic Journal of Differential Equations, 2017(128), 1-15.
  38. [38]  Ouannas, A., Odibat, Z., and Hayat, T. (2017), Fractional Analysis of Co-existence of Some Types of Chaos Synchronization, Chaos, Solution and Fractal, 105, 215-223.
  39. [39]  Ouannas, A., Wang, X., Pham, V.T., Grassi, G., and Ziar, T. (2018), Co-existence of some synchronization types between non-identical commensurate and incommensurate fractional-order chaotic systems with different dimensions, Advances in Difference Equations, 2018(35), 1-16.