Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Existence of positive solutions for system of second order integro-differential equations with multi-point boundary conditions on time scales

Journal of Applied Nonlinear Dynamics 7(2) (2018) 147--163 | DOI:10.5890/JAND.2018.06.004

V. Krishnaveni; K. Sathiyanathan

Department of Mathematics, SRMV College of Arts and Science, Coimbatore-641020, India

Download Full Text PDF

 

Abstract

In this paper, we have investigated the existence of positive solutions for system of nonlinear itegro-differential equations with multi(m)-point boundary conditions on time scales. Existence of positive solutions are established via Guo-Krasnosel’skii fixed point theorem for operators on a cone in a Banach space. An example is given to illustrate the effectiveness of our proposed result.

References

  1. [1]  Hilger, S. (1990), Analysis on measure chains-a unified approach to continuous and discreare calcuus, Result. Math., 18, 18-56.
  2. [2]  Bohner, M. and Peterson, A. (2001), Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston.
  3. [3]  Bohner, M. and Peterson, A.(Eds.)(2003), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston.
  4. [4]  Spedding, V. (2009), Taming Nature’s Numbers, New Scientist, 28-31.
  5. [5]  Gupta, C.P.(1992), Solvability of a three-point nonlinear boundary value problem for a second-order ordinary differential equations, J. Math. Anal. Appl., 168, 540-551.
  6. [6]  Benchohra,M., Berhoun, F., Hamani, S., Henderson, J., Ntouyas, S.K., Ouahab, A., and PurnarasI, K.(2009), Eigenvalues for iterative of systems of nonlinear boundary value problems on time scales, Nonlinear Dyn. Sys. Theory, 9, 11 -22
  7. [7]  Erbe, L. and Peterson, A. (1999), Green’s functions and comparison theorems for differential equations on measure chains, Dynam. Contin. Discrete Impuls. Systems, 6, 121-137.
  8. [8]  Franco, D. (2001), Green’s functions and comparison results for impulsive integrodifferential equations, Nonlin. Anal. Th. Meth. Appl., 47, 5723-5728.
  9. [9]  Guo, D., Lakshmikantham, V., and Liu, X. (1996), Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, Dordrecht.
  10. [10]  Prasa, K.R., Sreedhar, N., and Narasimhulu, Y. (2014), Eigenvalue intervals for iterative systems of nonlinearm-point boundary value problems on time scales, Diff. Eqns. Dyn. Sys., 22, 353-368.
  11. [11]  Prasad, K.R., Sreedhar, N., and Srinivas, M.A.S. (2015), Existence of positive solutions for systems of second order multi-point boundary value problems on time scales, Pro. Indian. Sci., 125, 353-370.
  12. [12]  Aneta, S.N. (2010), Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals, Abst. Appl. Anal.
  13. [13]  Guo, D. (1999), Initial value problems for second-order integro-differential equations in Banach spaces, Nonlin. Anal. Th. Meth. Appl., 37, 289-300.
  14. [14]  Guo, D. and Liu, X. (1993), Extremal solutions of nonlinear impulsive integrodifferential equations in Banach spaces, J. Math. Anal. Appl., 177, 538-553.
  15. [15]  Xing, Y., Han, M., and Zheng, G.(2005), Initial value problem for first-order integrodifferential equation of Volterra type on time scales, Nonlin. Anal. Th. Meth. Appl., 60, 429-442.
  16. [16]  Xing, Y., Ding, W., and Han, M. (2008), Periodic boundary value problems of integrodifferential equation of Volterra type on time scales, Nonlin. Anal. Th. Meth. Appl., 68, 127-138.