Journal of Applied Nonlinear Dynamics
Conservation Laws by using the Multiplier Method for a Fifth-Order Kdv Equation with Time-Dependent Coefficients and Linear Damping
Journal of Applied Nonlinear Dynamics 6(4) (2017) 473--478 | DOI:10.5890/JAND.2017.12.003
M.S. Bruzòn; M.L. Gandarias; R. de la Rosa
Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL62026-1805, USA
Download Full Text PDF
Abstract
In this paper we consider a family of fifth-order Korteweg-de Vries equations with time-dependent coefficients and linear damping term. By using the multiplier method of Anco and Bluman we determine all the low order conservation laws.
Acknowledgments
The authors acknowledge the financial support from Junta de Andalucgroup FQM-201, they express their sincere gratitude to the Plan Propio de Investigacide la Universidad de Ciz and want to thank the referees for their helpful comments. Bruzón and Gandarias also acknowledge support from NSC-2016.
References
-
[1]  | Boyd, J.P. (1991), Weakly Non-Local Solitons for Capillary-Gravity Waves: Fimh-Degree Korteweg-de VriesEquation, Physica D, 48, 129-146. |
-
[2]  | Hunter, J.K. and Scheurle, J. (1988), Existence of perturbed solitary wave solutions to a model equation forwater waves, Physica D, 32, 253-268. |
-
[3]  | Grimshaw, R. and Joshi, N. (1995), Weakly nonlocal solitary waves in a singularly perturbed KortewegdeVries Equation, SIAM J. Appl. Math., 55, 124-135. |
-
[4]  | Xia, X. and Shen, H.T. (2002), Nonlinear Interaction of Ice Cover with Shallow Water Wave in Channels, J.Fluid Mech., 467, 259-268. |
-
[5]  | Yun, X., Gao, Y.T., Sun, Z.Y., and Liu, Y. (2010), N-soliton solutions, B¨acklund transformation and Lax pairfor a generalized variable-coefficient fifth-order Korteweg-de Vries equation, Phys. Scr., 81, 045402-045408. |
-
[6]  | Champneys, A.R. and Groves, M.D. (1997), A global investigation of solitary-wave solutions to a twoparametermodel for water waves, J. Fluid Mech., 342, 199-229. |
-
[7]  | Kirchgässner, K. (1988), Nonlinearly Resonant SurfaceWaves and Homoclinic Bifurcation, Adv. Appl. Math.,26, 135-181. |
-
[8]  | Chen, B. and Xie, Y.C. (2005), Exact solutions for generalized stochastic Wick-type KdV-mKdV equations,Chaos Solitons Fractals, 23, 281-287. |
-
[9]  | de la Rosa, R., Gandarias, M.L., and Bruz′on M.S. (2015), Symmetries and conservation laws of a fifth-orderKdV equation with time-dependent coefficients and linear damping, Nonlinear Dyn.. |
-
[10]  | Noether, E. (1918), Invariante variations probleme, In: Nachrichten von der K¨oniglichen Gesellschaft derWissenschaften zu G¨ottingen, 234–57. |
-
[11]  | Anco, S.C. and Bluman, G. (1997), Direct construction of conservation laws from field equations, Phys. Rev.Lett., 78, 2869-2873. |
-
[12]  | Anco, S.C. and Bluman, G. (2002), Direct constrution method for conservation laws of partial differentialequations Part I: Examples of conservation law classifications, Euro. Jnl of Applied mathematics, 13, 545–566. |
-
[13]  | Anco, S.C. and Bluman, G. (2002), Direct constrution method for conservation laws of partial differentialequations Part II: General treatment, Euro. Jnl of Applied mathematics, 13, 567–585. |
-
[14]  | Anco, S.C. (2016), Generalization of noether theorem in modern form to non-variational partial differentialequations, in Recent progress and Modern Challenges in Applied Mathematics, Modeling and ComputationalScience, Fields Institute Communications. |
-
[15]  | Bluman, G.W. and Kumei S. (1989), Symmetries and differential equations, Berlin: Springer. |
-
[16]  | Olver, P. (1993), Applications of Lie groups to differential equations Springer-Verlag: New York. |
-
[17]  | Anco, S.C. and Khalique, C.M. (2016), Conservation laws of coupled semilinear wave equations, Int. J.Modern Physics B, 1640004. doi: 10.1142/S021797921640004X. |
-
[18]  | Bruzón, M.S., Gandarias, M.L., and de la Rosa, R. (2015), Conservation Laws of a Gardner Equation withTime-dependent Coefficients, Journal of Applied Nonlinear Dynamics, 4(2), 169–180. |
-
[19]  | Gandarias, M.L. and Bruz′on, M.S. (2012), Conservation laws for a class of quasi self-adjoint third orderequations, Appl. Math. and Comp., 219, 668-678. |
-
[20]  | Tracinà, R., Bruzón, M.S., and Gandarias, M.L. (2016), On the nonlinear self-adjointness of a class of fourthorderevolution equations. Appl. Math. Comput., 275, 299–304 . |
-
[21]  | Anco, S.C., et al. (2016), Symmetries and conservation laws of the generalized Krichever-Novikov equation,J. Phys. A: Math. Theor., 49 105201-105230. doi:10.1088/1751-8113/49/10/105201 |
-
[22]  | Anco, S.C. (2016), Symmetry properties of conservation laws, Int. J. Mod. Phys. B, 30 1640003. |