Journal of Applied Nonlinear Dynamics
Blow-up of Solutions to Reaction-diffusion System with Nonstandard Growth Conditions
Journal of Applied Nonlinear Dynamics 6(3) (2017) 407--425 | DOI:10.5890/JAND.2017.09.008
Arumugam Gurusamy$^{1}$; Krishnan Balachandran$^{2}$
$^{1}$ Computational Biology Division, DRDO-BU CLS, Bharathiar University Campus, Coimbatore- 641046, INDIA
$^{2}$ Department of Mathematics, Bharathiar University, Coimbatore - 641 046, INDIA
Download Full Text PDF
Abstract
This paper is concerned with the existence and blow-up of solutions of reaction diffusion system with p(x)− growth conditions. The existence of weak solution is proved by using the Galerkin method. The blow-up of solutions is established by applying the method of comparison with suitable blow-up of self-similar subsolutions. Finally the theoretical results are illustrated by numerical examples.
Acknowledgments
This work is supported by Defence Research and Development Organization(DRDO), New Delhi, Government of India.
References
-
[1]  | Harjulehto, P., Hasto, P., Le, U.V., and Nuortio, M. (2010), Overview of differential equations with nonstandard growth, Nonlinear Anal., 72, 4551??4574. |
-
[2]  | Zhikov, V.V. (1987), Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29, 33-66. |
-
[3]  | Zhang, Q., Liu, X., and Qiu, Z. (2009), On the boundary blow-up solutions of p(x)? Laplacian equations with singular coefficient, Nonlinear Anal., 70, 4053-4070. |
-
[4]  | Wang, J. (2011), Global existence and blow-up solutions for doubly degenerate parabolic system with nonlocal source , J. Math. Anal. Appl., 374, 290-310. |
-
[5]  | Tsutsumi, M. (1972/1973), Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. RIMS Kyoto Univ., 8, 951-973. |
-
[6]  | Souplet, P. (1998), Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29, 1301-1334. |
-
[7]  | Souplet P. and Weissler, F.B. (1997), Self-similar subsolutions and blowup for nonlinear parabolic equations, J. Math. Anal. Appl., 212, 60-74. |
-
[8]  | Shangerganesh, L. and Balachandran, K. (2014), Solvability of reaction-diffusion model with variable exponents, Math. Meth. Appl. Sci, 37, 1436-1448. |
-
[9]  | Quittner P. and Souplet, P. (2007), Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States. Birkhauser, Basel. |
-
[10]  | Pinasco, J.P. (2009), Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal., 71, 1094-1099. |
-
[11]  | Liu, B. and Li, F. (2012), Non-simultaneous blow-up in heat equations with nonstandard growth conditions, J. Differential Equations, 252, 4481-4502. |
-
[12]  | Ling, Z. and Wang, Z. (2012), Global existence and blow-up for a degenerate reaction-diffusion system with nonlocal sources, Appl. Math. Lett., 25, 2198-2202. |
-
[13]  | Li, F.C. and Xie, C.H. (2003), Global and blow-up solutions to a p? Laplacian equation with nonlocal source, Comput. Math. Appl., 46, 1525-1533. |
-
[14]  | Li, F.C. and Xie, C.H. (2003), Global existence and blow-up for a nonlinear porous medium equation, Appl. Math. Lett., 16, 185-192. |
-
[15]  | Li, F. and Liu, B. (2013), Asymptotic analysis for blow-up solutions in parabolic equations involving variable exponents, Appl. Anal., 92, 651-664. |
-
[16]  | Li, F.C. (2007), Global existence and blow-up of solutions to a nonlocal quasilinear degenerate parabolic system, Nonlinear Anal., 67, 1387-1402. |
-
[17]  | La Hoz, F.D. and Vadillo, F. (2009), A numerical simulation for the blow-up of semi-linear diffusion equations, Journal of Comp. Mathl., 86, 493-502. |
-
[18]  | Khelghati, A. and Baghaei, K. (2014), Blow-up in a semilinear parabolic problem with variable source under positive initial energy, Appl. Anal., 94, 1888-1896. |
-
[19]  | Jikov, V.V. (1994), Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin. |
-
[20]  | Andreu, F., Mazon, J.M., Simondon, F., and Toledo, J. (2002), Blow-up for a class of nonlinear parabolic problems, Asymptot. Anal., 29, 143-155. |
-
[21]  | Antontsev, S. and Shmarev, S. (2010), Blow- up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math., 234, 2633-2645. |
-
[22]  | Bendahmane, M. Burger, R., Baier, R.R., and Urbano, J.M. (2009), On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding, Math. Meth. Appl. Sci. 32, 1704-1737. |
-
[23]  | Baghaei, K., Ghaemi, M.B., and Hesaaraki, M. (2014), Lower bounds for the blow-up time in a semilinear parabolic problem involving a variable source, Appl. Math. Letter., 27, 49-52. |
-
[24]  | Bendahmane,M.,Wittbold, P., and Zimmermann, A. (2010), Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 - data, J. Differential Equations, 249, 1483-1515. |
-
[25]  | Boureanu, M.M. and Mihailescu, M. (2008), Existence and multiplicity of solutions for a neumann problem involving variable exponent growth conditions, Glasgow Math. J. 50, 565-574. |
-
[26]  | Diening, L., Harjulehto, P., Hasto, P., and Ruzicka, M. (2011), Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag Berlin Heidelberg. |
-
[27]  | Du, L. (2007), Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources, Comput. Appl. Math., 202, 237-247. |
-
[28]  | Guo, Z., Liu, Q., Sun, J., and Wu, B. (2011), Reaction-diffusion systems with p(x)? growth for image denoising, Nonlinear Anal., 12, 2904-2918. |
-
[29]  | Alaoui, M.K., Messaoudi, S.A., and Khenous, H.B. (2014), A blow-up result for nonlinear generalized heat equation, Comput. Math. Appl., 68, 1723-1732. |
-
[30]  | Guo, Z., Yin J., and Liu, Q. (2011), On a reaction-diffusion system applied to image decomposition and restoration, Math. Comp. Model., 53, 1336-1350. |
-
[31]  | Hecht, F. (2012), New development in freefem++, J. Numer. Math. 20, 251-265. |
-
[32]  | Zhikov, V.V. (1992), On passing to the limit in nonlinear variational problem, Math. Sb., 183, 47-84. |
-
[33]  | Zhikov, V.V. (1995), On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 249-269. |