Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Experimental Verification of the Time-Fractional Diffusion of Methanol in Silica

Journal of Applied Nonlinear Dynamics 6(2) (2017) 135--151 | DOI:10.5890/JAND.2017.06.002

Alexey A. Zhokh; Peter E. Strizhak

L.V.Pisarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospect Nauki 31, 03028 Kiev, Ukraine

Download Full Text PDF

 

Abstract

Experimental study of the mass transfer kinetics for methanol in mesoporous silica is presented. Analysis of the experimental data shows that there is no good correspondence between them and corresponding solutions found according to the second Fick’s law for various pores geometries of the silica. Contrary, we show a good fit of the experimental data by a solution of the time-fractional diffusion equation with proper boundary conditions that correspond to experiment. Our results support that mass transfer in silica, which is a geometrically restricted media, may exhibit anomalous features, due to the geometrical constraints associated with randomly porous structure of a solid.

Acknowledgments

Authors thank to A.I. Tripolskyi for his help in establishing experimental setup and fruitful discussions.

References

  1. [1]  Metzler, R. and Klafter, J. (2000), Boundary value problems for fractional differential equations, Physica A, 278, 107-125.
  2. [2]  Podlubny, I. (2002), Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation, Fracional Calculus and Applied Analysis, 5(4), 367-386.
  3. [3]  Vlahos, L, Isliker, H., Kominis, Y., and Hizanidis, K. (2008), Normal and Anomalous Diffusion: A Tutorial, Order and Chaos, 10, 39.
  4. [4]  Ciesielski, M. and Leszczynski, J. (2003), Numerical simulations of anomalous diffusion, Computer Methods in Mechanics, June(3-6), 1-5.
  5. [5]  O’Shaughnessy, B. and Procaccia, I. (1985), Diffusion on fractals, Physical Review A, 32(5), 3073-3083.
  6. [6]  Płciniczak, Ł. (2015), Analytical studies of a time-fractional porous medium equation. Derivation, approximation and applications, Communications in Nonlinear Science and Numerical Simulations, 24(1-3), 169-183.
  7. [7]  Chen,W., Sun, H., Zhang, X., and Korošak, D. (2010), Anomalous diffusion modeling by fractal and fractional derivatives, Computer Mathematics with Applications, 59(5), 1754-1758.
  8. [8]  Paradisi, P., Cesari, R., Mainardi, F., and Tampieri, F. (2001), The fractional Fick’s law for non-local transport processes, Physica A, 293, 130 -142.
  9. [9]  Zhang, H., Liu, F., and Anh, V. (2007), Numerical approximation of Levy-Feller diffusion equation and its probability interpretation, Journal of Computational and Applied Mathematics, 206, 1098-1115.
  10. [10]  Cázares-Ramírez, R.-I., and Espinosa-Paredes, G. (2016), Time-fractional telegraph equation for hydrogen diffusion during severe accident in BWRs, Journal of King Saud University - Science, 28(1), 21-28.
  11. [11]  Hapca, S., Crawford, J.W., Macmillan, K., Wilson, M.J., and Young, I.M. (2007), Modeling nematode movement using time-fractional dynamics, Journal of Theoretical Biology, 248, 212-224.
  12. [12]  Rodriguez, R., Rojas, G., Estevez, M., and Vargas, S. (2002), Fractal characterization of silica sol prepared by the sol-gel method: From the sol formation to the flocculation process, Journal of Sol-Gel Science Technology, 23, 99-105.
  13. [13]  Hinic, I. (1994), Behavior of Fractal Structure Characteristics for Neutral Silica Aerogels during the Sintering Process, Physics of State Solid, 144, 59-63.
  14. [14]  Sintes, T., Toral, R., and Chakrabarti, A. (1996), Fractal structure of silica colloids revisited, Journal of Physics A: Mathematical and General, 29(3), 533-540.
  15. [15]  Martin, J.E. andWilcoxon, J. (1990), Fractal Structure and Fractal Time in Silica Sol-Gels, MRS Proceedings, 180.
  16. [16]  Pachepsky, Y., Benson, D., and Rawls, W. (2000), Simulating Scale-Dependent Solute Transport in Soils with the Fractional Advective-Dispersive Equation, Soil Science Society of America Journal, 64, 1234.
  17. [17]  Anderson, A.N., Crawford, J.W., and McBratney, A.B. (2000), On Diffusion in Fractal Soil Structures, Soil Science Society of America Journal, 64, 19-24.
  18. [18]  Bovet, A., Gamarino, M., Furno, I., Ricci, P., Fasoli, A., Gustafson, K., Newman, D.E., and Sánchez, R. (2014), Transport equation describing fractional Lévy motion of suprathermal ions in TORPEX, Nuclear Fusion, 54(10), 104009.
  19. [19]  Li, C., Qian, D., and Chen, Y. (2011), On Riemann-Liouville and Caputo derivatives, Discrete Dynamics in Nature and Society, 2011, 15.
  20. [20]  Katugampola, U. (2014), A New Approach to Generalized Fractional Derivatives, Bull. Math. Anal. Appl., 6(4), 1-12.
  21. [21]  Mandelis, A. (1995), Green’s functions in thermal-wave physics: Cartesian coordinate representations, Journal of Applied Physics, 78(2), 647-655.
  22. [22]  Han, B. (2012) The time-space fractional diffusion equation with an absorption term, 2012 24th Chinese Control and Decision Conference, 2(3), 1054-1056.
  23. [23]  Huang, F. and Liu, F. (2005), The Space-Time Fractional Diffusion Equation with Caputo Derivatives,” Journal of Applied Mathematics and Computing, 19(1), 179-190.
  24. [24]  Pagnini, G. (2014), Short note on the emergence of fractional kinetics, Physica A, 409, 29-34.
  25. [25]  Metzler, R. and Klafter, J. (2004), The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General, 37, 161-208.
  26. [26]  Atkinson, C. and Osseiran, A. (2011), Rational Solutions for the Time-Fractional Diffusion Equation, SIAM Journal on Applied Mathematics, 71(1), 92-106.
  27. [27]  Mainardi, F. and Pagnini, G. (2003), The Wright functions as solutions of the time-fractional diffusion equation, Applied Mathematics and Computation, 141, 51-62.
  28. [28]  Zel’dovich, Ya. B., and Myshkis, A.D. (1973), Elements of Mathematical Physics [in Russian]. Moscow: Nauka Publishing House.
  29. [29]  Crank, J. (1975), The Mathematics of Diffusion, Second edition. Oxford: Clarendon Press.
  30. [30]  Metzler, R. and Klafter, J. (2000), The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 77.
  31. [31]  Haubold, H.J., Mathai, A.M., and Saxena, R.K. (2011), Mittag-Leffler functions and their applications, Journal of Applied Mathematics, 2011, 52.
  32. [32]  Trewyn, B.G., Slowing, I.I., Giri, S., Chen, H., and Lin, V.S. (2007), Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol - Gel Process and Applications in Controlled Release, Accounts of Chemical Research, 40, 846-853.
  33. [33]  Marrero, T.R. and Mason, E.A. (1972), Gaseous Diffusion Coefficients, Journal of Physical and Chemical Reference Data, 1(1), 117.
  34. [34]  Katsanos, N.A. (1993), Studies of diffusion and other rate processes by gas chromatography, Pure and Applied Chemistry, 65(10), 2245-2252.
  35. [35]  Khalid, K., Khan, R.A., and Zain, S.M. (2011), Analysis of Diffusion Coefficient using Reversed-Flow Gas Chromatography-A Review, American Journal of Applied Science, 8(5), 428-435.
  36. [36]  Kloosterziel, R.C. (1990), On the large-time asymptotics of the diffusion equation on infinite domains, Journal of Engineering Mathematics, 24, 213-236.
  37. [37]  Khare, R., Millar, D., and Bhan, A. (2015), A mechanistic basis for the effects of crystallite size on light olefin selectivity in methanol-to-hydrocarbons conversion on MFI, Journal of Catalysis, 321, 23-31.
  38. [38]  Blomqvist, C.H., Abrahamsson, C., Gebäck, T., Altskär, A., Hermansson, A.-M., Nydén, M., Gustafsson, S., Lorén, N., and Olsson, E. (2015), Pore size effects on convective flow and diffusion through nanoporous silica gels, Colloids Surfaces A: Physicochemical and Engineering Aspects, 484, 288-296.
  39. [39]  Sakintuna, B., Yurum, Y., and Fakioglu, E. (2005), Diffusion of Volatile Organic Chemicals in Porous Media. 2. Alcohol/Templated Porous Carbon Systems, Energy & Fuels, 19(6), 2219 - 2225.
  40. [40]  Sakintuna, B., Yurum, Y., and Cuhadar, O. (2006), Diffusion of Volatile Organic Chemicals in Porous Media. 2. Alcohol/Templated Porous Carbon Systems, Energy & Fuels, 20, 1269-1274.
  41. [41]  Remešíková, M. (2004), Solution of convection-diffusion problems with nonequilibrium adsorption, Journal of Computational and Applied Mathematics, 169, 101-116.
  42. [42]  Tadjeran, C. and Meerschaert, M.M. (2007), A second-order accurate numerical method for the twodimensional fractional diffusion equation, Journal of Computational Physics, 220, 813-823.
  43. [43]  Cruz, M.I., Stone, W.E.E., and Fripiat, J.J. (1972), The Methanol-Silica Gel System. II. The Molecular Diffusion and Proton Excahnge from Pulse Proton Magnetic Resonance Data, Journal of Physical Chemistry, 76(21), 3078 - 3088.
  44. [44]  Su, N. (2014), Mass-time and space-time fractional partial differential equations of water movement in soils: Theoretical framework and application to infiltration, Journal of Hydrology, 519, 1792-1803.
  45. [45]  Ibe, O.C. (2013), Elements of Random Walk and Diffusion Processes. Hoboken: John Wiley & Sons.
  46. [46]  Hilfer, R. (2000), Fractional Diffusion based on Riemann-Liouville Fractional Derivatives, The Journal of Physical Chemistry B, 104(16), 3914-3917.
  47. [47]  Scalas, E., Gorenflo, R., and Mainardi, F. (2004), Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation, Physical Review E, 69, 011107.