Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Modelling a Thermal Diffusion Interface for Robust Fractional Control

Journal of Applied Nonlinear Dynamics 5(3) (2016) 305--324 | DOI:10.5890/JAND.2016.09.004

Riad Assaf; Roy Abi Zeid Daou; Xavier Moreau

IMS Laboratory, University of Bordeaux, UMR 5218 CNRS, 33405 Talence, Bordeaux, France

Download Full Text PDF

 

Abstract

The objective of this work is to review and elaborate an approximation method of the transfer functions of both semi-infinite and finite homogeneous plane thermal diffusive interfaces, in view to use in robust control applications and to obtain accurate time responses. Novel models are proposed based on the fractional order integration found naturally when modelling diffusive interfaces. The models are verified by checking with the existing exact responses. The results obtained in this part of the work show a very good approximation of the transfer functions of the systems when using a rational representation in both frequency and time domains for several inputs such as the impulse and the step.

References

  1. [1]  Oustaloup, A. (1975), Etude et réalisation d’un système d’asservissement d’ordre 3/2 de la fréquence d’un laser à colorant continu, France.
  2. [2]  Miller, K. and Ross, B.(1933) An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York.
  3. [3]  Serrier, P., Moreau, X. and Oustaloup, A. (2007), Limited-Bandwidth Fractional Differentiator: Synthesis and Application in Vibration Isolation, in Advances in Fractional Calculus, Springer, pp. 287–302.
  4. [4]  Charef, A. and Fergani, N. (2010), PIλDμ Controller Tuning For Desired Closed-Loop Response Using Impulse Response, in Workshop on Fractional Derivation and Applications, Badajoz, Spain.
  5. [5]  Talangue, D., Joshi, S. and Gaikward, S. (2013), Control of autonomous underwater vehicle using fractional order PIλ controller, in IEEE International Conference on Control Applications, Hyderabad.
  6. [6]  Franz, M. and Schölkopf, B. (2005), Implicit Wiener series for higher-order image analysis, Advances in Neural Information Processing Systems, 17, 465-472.
  7. [7]  Gonzalez, E. and Petras, I. (2015), Advances in fractional calculus: Control and signal processing applications, in 16th International Carpathian Control Conference (ICCC), Szilvasvarad.
  8. [8]  Sommacal, L., Melchior, P., Cabelguen, J.-M., and Oustaloup, A.(2008), Fractional Multi-Models of the Gastrocnemius Frog Muscle, Journal of Vibration and Control, 14(9-10), 1415–1430.
  9. [9]  Ionescu, C., Desager, K. and De Keyser, R. (2011), Fractional order model parameters for the respiratory input impedance in healthy and in asthmatic children, Computer Methods and Programs in Biomedicine, 101(3), 315–323.
  10. [10]  Ghasemi, S., Tebash, A. and Askari-Marnani, J.(2014), Application of Fractional Calculus Theory to Robust Controller Design for Wind Turbine Generators, IEEE transaction on Energy Conversion, 29(3), 780-787.
  11. [11]  Yu, W. and Zheng, W.(2010), The Research of Passive Power Filter Based on Fractional Calculus, in 3rd International Conference on Intelligent Networks and Intelligent Systems (ICINIS), Shenyang.
  12. [12]  Abi Zeid Daou, R., Moreau, X., Assaf, R. and Christophy, F. (2012), Analysis of the Fractional Order System in the thermal diffusive Interface - Part 1: application to a semi-infinite plane medium, in 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Zouk Mosbeh, Lebanon.
  13. [13]  Assaf, R., Moreau, X., Abi Zeid Daou, R. and Christophy, F. (2012), Analysis of the Fractional Order System in the thermal diffusive interface - Part 2: application to a finite plane medium, in 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Zouk Mosbeh, Lebanon.
  14. [14]  Abi Zeid Daou, R., Christophy, F., Assaf, R., and Moreau, X. (2013), Approximation of a thermal diffusive interface fractional-order system - Part 1: application to a semi-infinite plane, in 9th Asian Control Conference (ASCC), Istanbul, Turkey.
  15. [15]  Christophy, F., Abi Zeid Daou, R., Assaf, R., and Moreau, X.(2013), Approximation of a thermal diffusive interface fractional-order system - Part 2: application to a finite plane, in 9th Asian Control Conference (ASCC), Istanbul, Turkey.
  16. [16]  Abi Zeid Daou, R., Francis, C., and Moreau, X. (2009), Robustness analysis of fractional controllers based on RLC cells, in Advances in Computational Tools for Engineering Applications (ACTEA), Zouk Mosbeh, Lebanon.
  17. [17]  Özışık, M.N.(1985), Heat Transfer, a Basic Approach, Vols. ISBN 0-07-047982-8, New York, McGraw-Hill.
  18. [18]  Assaf, R., Abi Zeid Daou, R., Moreau, X., and Christophy, F. (2015), From the formal concept analysis to the numerical simulation of the thermal diffusion phenomena in a finite medium, in Fractional Calculus: Applications, Vols. ISBN 978-1-63463-221-8, New York, Nova Science Publishers, Inc., 93-122.
  19. [19]  Özışık,, M.N. (1980), Heat Conduction, Vols. ISBN 0-471-05481-X, New York, John Wiley & Sons.
  20. [20]  Poldubny, I., Petras, I., Vinagre, B., O’Leary, P., and Dorcak, L. (2002), Analogue Realizations of Fractional- Order Controllers, Journal of Nonlinear Dynamics, 29, 281–296.
  21. [21]  Aoun, M., Malti, R., Levron, F., and Oustaloup, A. (2004), Numerical simulations of fractional systems: An overview of existing methods and improvements, Nonlinear Dynamics, 38, 117-131.
  22. [22]  Magin, R., Ortigueira, M., Podlubny, I. and Trujillo, J. (2011), On the fractional signals and systems, Signal Processing, 91(3), 350-371.
  23. [23]  Ortigueira, M. (2000), Introduction to fractional linear systems. Part 1. Continuous-time case, IEE Proc.Vis. Image Signal Process., 147(1), 62-70.
  24. [24]  Das, S. (2001), Functional Fractional Calculus, 2nd ed., Springer Verlag, Berlin Heidelberg.
  25. [25]  Oustaloup, A. (1995), La dérivation non entière : théorie, synthèse et applications, Hermès, Ed., Hermes, Paris.
  26. [26]  Oustaloup, A.(1983), Systèmes asservis linéaires d’ordre fractionnaire, Paris: Masson.
  27. [27]  Battaglia, J.-L. (2008), Heat Transfer in Materials Forming Processes, Vols. ISBN 978-1-84821-052-3,Wiley- ISTE, London.
  28. [28]  I. The MathWorks, (2011), Matlab, Help of the function ‘prescale’.