Journal of Applied Nonlinear Dynamics
Global Dynamics of a Three Species Predator-Prey Competition Model with Holling type II Functional Response on a Circular Domain
Journal of Applied Nonlinear Dynamics 5(1) (2016) 93--104 | DOI:10.5890/JAND.2016.03.007
Walid Abid$^{1}$, R. Yafia$^{2}$, M.A. Aziz-Alaoui$^{3}$, H. Bouhafa$^{1}$, A. Abichou$^{1}$
$^{1}$ Université de Carthage, Laboratoire d’ingenierie Mathématique EPT, Tunisia
$^{2}$ Ibn Zohr University, Polydisciplinary Faculty of Ouarzazate, B.P: 638, Ouarzazate, Morocco
$^{3}$ Laboratoire de Mathématiques Appliquées, 25 Rue Ph. Lebon, BP 540, 76058Le Havre Cedex
Download Full Text PDF
Abstract
This paper is devoted to the study of a three species ecosystem model consisting of a prey, a predator and a top predator. This model is given by a reaction diffusion system defined on a circular spatial domain and incorporates the Holling type II and a modified Leslie- Gower functional response. The aim of this paper is to investigate theoretically and numerically the asymptotic behavior of the interior equilibrium of the model. The conditions of boundedness, existence of a positively invariant and attracting set are proved. Sufficient conditions of local/global stability of the positive steady state are established. In the end, we present a numerical evidence of time evolution of the pattern formation.
References
-
[1]  | Lotka, A.J. (1925), Elements of Physical Biology, Williams and Wilkins, Baltimore, New York. |
-
[2]  | Volterra, V. (1926), Variation and fluctuations of the number of individuals of animal species living together. In Animal Ecology. McGraw-Hill. |
-
[3]  | Aziz-Alaoui, M.A. and Daher, O.M. (2003), Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling type II schemes, Applied Mathematics Letters, 16, 1069-1075. |
-
[4]  | Camara, B.I. and Aziz-Alaoui, M.A. (2008), Dynamics of predator-prey model with diffusion, Dynamics of Continuous, Discrete and Impulsive System, series A, 15, 897-906. |
-
[5]  | Letellier, C. and Aziz-Alaoui, M.A. (2002), Analysis of the dynamics of a realistic ecological model, Chaos Solitons Fractals, 13, 95-107. |
-
[6]  | Chunyan, J. and Jiang, D. (2011), A note on a predator-prey model with modified Leslie-Gower and Hollingtype II schemes with stochastic perturbation, Journal of Mathematical Analysis and Applications, 377, 435- 440. |
-
[7]  | Abid, W., Yafia, R., Aziz-Alaoui, M.A., Bouhafa, H. and Abichou, A. (2015), Diffusion Driven Instability and Hopf Bifurcation in Spatial Predator-Prey Model on a Circular Domain, Applied Mathematics and Computation, 260, 292-313. |
-
[8]  | Abid, W., Yafia, R., Aziz-Alaoui, M.A., Bouhafa, H. and Abichou, A. (2015), Global Dynamics on a Circular Domain of a Diffusion Predator-Prey Model with Modified Leslie-Gower and Beddington-DeAngelis Functional Type, Evolution Equations and Control Theory, 4, 115-129. |
-
[9]  | Maionchi, D.O., dos Reis, S.F. and de Aguiar, M.A.M. (2006), Chaos and pattern formation in a spatial tritrophic food chain, Ecological Modelling, 191, 291-303. |
-
[10]  | Upadhyay, R.K. and Sharada, N.R. (2011), Complex dynamics of a three species food-chain model with Holling type IV functional response, Nonlinear Analysis: Modelling and Control, 16, 353-374. |
-
[11]  | Dubey, B. and Upadhyay, R. K. (2004), Persistence and extinction of one-prey and two-predator system, Nonlinear Analysis, 9, 307-329. |
-
[12]  | Shuwen, Z. and Dejun, T. (2009), Permanence in a food chain system with impulsive perturbations, Chaos, Solitons and Fractals, 40, 392-400. |
-
[13]  | Mada Sanjaya, W.S., Mamat, M., Salleh, Z. and Mohamad, N. (2011), Numerical simulation dynamical model of three species food chain with Holling type-II functional response, Malaysian Journal of Mathematical Sciences, 5, 1-12. |
-
[14]  | Leslie, P. H. (1948), Some further notes on the use of matrices in population mathematics, Biometrica, 35, 213-245. |
-
[15]  | Leslie, P.H. and Gower, J.C. (1960), The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrica, 47, 219-234. |
-
[16]  | Camara, B.I. (2009), Complexité de dynamiques de modèles proie-prédateur avec diffusion et applications, Ph.D. thesis, Université du Havre. |
-
[17]  | Aziz-Alaoui, M.A. (2002), Study of a Leslie-Gower-type tritrophic population model Chaos, Solitons and Fractals, 14, 1275-1293. |
-
[18]  | Nindjin, A.F. and Aziz-Alaoui, M.A. (2008), Persistence and global stability in a delayed Leslie-Gower type three species food chain, Journal Mathematical Analysis and Applications, 340, 340-355. |