Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Paralysis Mechanism of α-Conotoxin SI from Molecular Dynamics Simulations and Free Energy Calculations

Journal of Applied Nonlinear Dynamics 5(1) (2016) 59--64 | DOI:10.5890/JAND.2016.03.004

Onur Tuna$^{1}$; Serdar Kuyucak$^{2}$; Turgut Baştuğ$^{1}$

$^{1}$ Department of Material Science and Nanotechnology, TOBB University of Economics and Technology, Ankara, Turkey

$^{2}$ School of Physics, University of Sydney, NSW, Australia

Download Full Text PDF

 

Abstract

Peptide toxins offer new avenues for development of novel drugs. α- Conotoxin SI, which binds to neuromuscular Nicotinic Acetylcholine Receptor, is such an analgesic drug candidate. Understanding the mechanism of action is crucial for improving the properties of drug candidates. Here, we use docking and molecular dynamics simulations to propose a model for binding of α-Conotoxin SI to Nicotinic Acetylcholine Receptor and discuss its paralysis effect.

References

  1. [1]  Jonsson, T., Christensen, C.B., Jordening, H., and Frolund, C. (1988), The bioavailability of rectally administered morphine, Pharmacological Toxicology, 62, 203-205.
  2. [2]  Martin, W.R. and Fraser, H.F. (1961), A comparative study of physiological and subjective effects of heroin and morphine administered intravenously in postaddicts, Journal of Pharmacology and Experimental Therapeutics, 133, 388-399.
  3. [3]  Karlin, A. (1993), Structure of nicotinic acetylcholine receptors, Current Opinion in Neurobiology, 3, 299- 309.
  4. [4]  Favreau, P., Le Gall, F., Benoit, E., and Molgo, J. (1999), A review on conotoxins targeting ion channels and acetylcholine receptors of the vertebrate neuromuscular junction, Acta Physiologica, 49, 257-267.
  5. [5]  Alder, B.J. and Wainwright, T.E. (1959), Studies in Molecular Dynamics. I. General Method, The Journal of Chemical Physics, 31, 459.
  6. [6]  Torrie, G.M. and Valleau, J.P. (1977), Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, Journal of Computational Physics, 23, 187-199.
  7. [7]  Bastug, T. and Kuyucak, S. (2009), Importance of the Peptide Backbone Description in Modeling the Selectivity Filter in Potassium Channels, Biophysical Journal 96, 4006-4012.
  8. [8]  Miyazawa, A., Fujiyoshi, Y., and Unwin, N. (2003), Structure and gating mechanism of the acetylcholine receptor pore, Nature, 423, 949-955.
  9. [9]  Grosman, C., Zhou, M., and Auerbach, A. (2000), Mapping the conformational wave of acetylcholine receptor channel gating, Nature, 403, 773-776.
  10. [10]  Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K., and Numa, S. (1985), Role of acetylcholine receptor subunits in gating of the channel, Nature, 318, 538-543.
  11. [11]  de Vries, S.J., van Dijk, M., and Bonvin, A.M.J.J. (2010) , The HADDOCK web server for data-driven biomolecular docking Nature Protocols, 5, 883-897.
  12. [12]  Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., and Schulten, K. (1999) , NAMD2: Greater scalability for parallel molecular dynamics, Journal of Computational Physics, 151, 283-312.
  13. [13]  Brooks, B.R., Brooks III, C.L., Mackerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W, York, D.M., and Karplus, Y. (2009), CHARMM: The Biomolecular simulation Program. Journal of Computational Chemistry, 30, 1545-1615.
  14. [14]  Buck, M., Bouguet-Bonnet, S., Pastor, R.W., and MacKerell Jr., A.D. (2006), , Importance of the CMAP Correction to the CHARMM22 Protein Force Field: Dynamics of Hen Lysozyme Biophysical Journal, 90, L36-L38.