Journal of Applied Nonlinear Dynamics
Initial-Boundary Value Problems for Local Fractional Laplace Equation Arising in Fractal Electrostatics
Journal of Applied Nonlinear Dynamics 4(4) (2015) 349--356 | DOI:10.5890/JAND.2015.11.002
Xiao-Jun Yang$^{1}$, H. M. Srivastava$^{2}$, Dumitru Baleanu$^{3}$,$^{4}$
$^{1}$ Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, People’s Republic of China
$^{2}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
$^{3}$ Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, TR-06530 Ankara, Turkey
$^{4}$ Institute of Space Sciences, P.O. BOX, MG-23, RO-76900 Magurele-Bucharest, Romania
Download Full Text PDF
Abstract
The initial-boundary value problems for the local fractional Laplace equation, which arises in fractal electrostatics, are investigated in this article. The non-differentiable solutions with different initial and boundary conditions are obtained by using the local fractional series expansion method.
References
-
[1]  | Vicsek, T. (1989), Fractal Growth Phenomena, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong. |
-
[2]  | Barabási, A. L. (1995), Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, London and New York. |
-
[3]  | Falconer, K. (2013), Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, New York, Chichester, Brisbane and Toronto. |
-
[4]  | Gouyet, J. F., Mandelbrot, B. (1996), Physics and Fractal Structures, Masson, Paris. |
-
[5]  | Le Poidevin, R. (1992), On the acausality of time, space, and space-time, Analysis, 52, 146-154. |
-
[6]  | Zmeskal, O., Vala, M., Weiter, M., Stefkova, P. (2009), Fractal-Cantorian geometry of space-time, Chaos, Solitons & Fractals, 42, 1878-1892. |
-
[7]  | Yang, X.-J. (2012), Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York. |
-
[8]  | Yang, X.-J., Baleanu, D., Machado, J. A. T. (2013), Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis, Boundary Value Problems, 2013, 1-16. |
-
[9]  | Kolwankar, K. M., Gangal, A. D. (1998), Local fractional Fokker-Planck equation, Physical Review Letters, 80, 214-217. |
-
[10]  | Kolwankar, K. M., Gangal, A. D. (1996), Fractional differentiability of nowhere differentiable functions and dimensions, Chaos: An Interdisciplinary Journal of Nonlinear Science, 6, 505-513. |
-
[11]  | Carpinteri, A., Cornetti, P. (2002), A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos, Solitons & Fractals, 13, 85-94. |
-
[12]  | Carpinteri, A., Cornetti, P., Sapora, A. (2009), Static-kinematic fractional operators for fractal and non-local solids, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 89, 207-217. |
-
[13]  | Anastassiou, A., Duman, O. (2013), Advances in Applied Mathematics and Approximation Theory, Springer, New York. |
-
[14]  | Machado,J. A. T., Baleanu, D., Luo, Albert, C. J. (2014), Discontinuity and Complexity in Nonlinear Physical Systems, Springer, Berlin, Heidelberg and New York. |
-
[15]  | Roy, A. Z. D., Xavier, M. (2014), Fractional Calculus: Theory, Nova Science, New York. |
-
[16]  | De Oliveira, E. C., Machado, J. A. T. (2014), Review of definitions for fractional derivatives and integrals, Mathematical Problems in Engineering, 2014, Article ID 238459, 1-6. |
-
[17]  | Yang, X.-J., Srivastava, H. M., He, J.-H., Baleanu, D. (2013), Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives, Physics Letters A, 377, 1696-1700. |
-
[18]  | Yang, X.-J., Baleanu, D., Khan, Y., et al. (2014), Local fractional variational iteration method for diffusion and wave equations on Cantor sets, Romanian Journal of Physics, 59, 36-48. |
-
[19]  | Li, Y.-Y., Zhao, Y., Xie, G.-N., Baleanu, D., Yang, X.-J. (2014), Local fractional Poisson and Laplace equations with applications to electrostatics in fractal domain, Advances in Mathematical Physics, 2014, Article ID 590574, 1-5. |
-
[20]  | Yan, S.-P., Jafari, H., Jassim, H. K. (2014), Local fractional Adomian decomposition and function decomposition methods for Laplace equation within local fractional operators, Advances in Mathematical Physics, 2014, Article ID 161580, 1-7. |
-
[21]  | Yang, A.-M., Yang, X.-J., Li, Z.-B. (2013), Local fractional series expansion method for solving wave and diffusion equations on Cantor sets, Abstract and Applied Analysis, 2013, Article ID 351057, 1-5. |
-
[22]  | Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. (2006), Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York. |
-
[23]  | Srivastava, H. M., Golmankhaneh, A. K., Baleanu, D., Yang, X.-J. (2014), Local fractional Sumudu transform with application to IVPs on Cantor sets, Abstract and Applied Analysis, 2014, Article ID 620529, 1-7. |
-
[24]  | Yang, A.-M., Lie, J., Srivastava, H. M., Xie, G.-N., Yang, X.-J. (2014), Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative, Discrete Dynamics in Nature and Society, 2014, Article ID 365981, 1-8. |
-
[25]  | Yang, X.-J., Hristov, J., Srivastava, H. M., Ahmad, B. (2014), Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation, Abstract and Applied Analysis, 2014, Article ID 278672, 1-10. |
-
[26]  | Gorenflo, R., Mainardi, F., Srivastava, H. M. (1998), Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena, Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, Bulgaria; August 18-23, 1997) (D. Bainov, Editor), pp. 195-202, VSP Publishers, Utrecht and Tokyo. |
-
[27]  | Baleanu, D., Srivastava, H. M., Yang, X.-J. (2015), Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets, Progress in Fractional Differentiation and Applications, 1, 1-11. |