Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Unknown Input Observer Design for Linear Fractional-Order Time-Delay Systems

Journal of Applied Nonlinear Dynamics 4(2) (2015) 117--130 | DOI:10.5890/JAND.2015.06.002

Y. Boukal$^{1}$,$^{2}$, M. Darouach$^{1}$, M. Zasadzinski$^{1}$, N.E. Radhy$^{2}$

$^{1}$ Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN UMR-7039, CNRS), IUT de Longwy, 186 rue de Lorraine 54400, Cosnes et Romain, France

$^{2}$ Université Hassan II, Faculté des Sciences Ain-Chock, Laboratoire Physique et Matériaux Micro électronique Automatique et Thermique BP: 5366 Maarif, Casablanca 20100, Morocco

Download Full Text PDF

 

Abstract

This paper considers unknown input functional fractional order observer design for fractional-order linear time-invariant (LTI) systems with a constant time delay. After given the existence conditions of such observer, based on the fractional order Lyapunov stability approach, a sufficient condition for the asymptotic stability of the estimation error is given in a linear matrix inequality (LMI) formulation. The obtained results are illustrated by a numerical example.

References

  1. [1]  Battaglia, J.L., Ludovic, L.L., Batsale, J.C., Oustaloup, A., and Cois, O. (2000), Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction, International Journal of Thermal Sciences, 39(3), 374-389,
  2. [2]  Darling, R. and Newman, J. (1997), On the short-time behavior of porous intercalation electrodes, Journal of The Electrochemical Society, 144(9), 3057-3063.
  3. [3]  Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, Elsevier.
  4. [4]  Ortigueira, M.D. and Tenreiro Machado, J.A.(2003), Editorial: fractional signal processing and applications, Signal Process, 83(11), 2285-2286.
  5. [5]  Sabatier, J., Agrawal, O.P., and Tenreiro Machado, J.A. (2007), Advances in Fractional Calculus, Springer, 2007.
  6. [6]  Sheng, H., Chen, Y., and Qiu, T. (2012), Fractional Processes and Fractional-Order Signal Processing-Techniques and Applications, Springer, Berlin.
  7. [7]  Vinagre, B.M.(2001), Modeling and Control of Dynamic Systems characterized by Integro-differential Equations of Fractional Order, PhD thesis, University of Distance Education, Spain.
  8. [8]  Myshkis, A. and Kolmanovskii, V. (1999), Introduction to the Theory and Applications of Functional Differential Equations, Dordrecht, Kluwer academy.
  9. [9]  Niculescu, S.I. (2001), Delay Effects on Stability : A Robust Control Approach, In lecture notes in control and information sciences, Springer, Berlin.
  10. [10]  Mihailo, P.L. and Aleksandar, M.S. (2009), Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach, Mathematical and Computer Modelling, 49(3-4), 475-481
  11. [11]  L. Liqiong and Z. Shouming. (2010), Finite-time stability analysis of fractional-order with multi-state time delay, International Journal of Information and Mathematical Sciences, 6(4), 237-240.
  12. [12]  Bus lowicz, M. (2008), Stability of linear continuous-time fractional order systems with delays of the retarded type, Bulletin Of The Polish Academy Of Sciences Technical Sciences, 56(4), 237-240.
  13. [13]  Bonnet, C. and Partington, J.R. (2001), Stabilization of fractional exponential systems including delays. Kybernetika, 37, 345-353.
  14. [14]  Bonnet, C. and Partington, J.R. (2002), Analysis of fractional delay systems of retarded and neutral type. Automatica, 38(7), 1133-1138.
  15. [15]  Chyi, H. and Cheng, C.Yi. (2006), A numerical algorithm for stability testing of fractional delay systems, Automatica, 42(5), 825-831.
  16. [16]  X. Lianglin, Z.Yun, and J.Tao (2011), Stability analysis of linear fractional order neutral system with multiple delays by algebraic approach, World Academy of Science, Engineering and Technology, 52, 983-986.
  17. [17]  Boukal, Y., Radhy, N.E., Darouach, M., and Zasadzinski, M. (2013), Design of full and reduced orders observers for linear fractional-order systems in the time and frequency domains, In 3nd International Conference on Systems and Control, ICSC 2013.
  18. [18]  Chen,Y. Vinagre, BlasM., and Podlubny, I. (2004), Fractional order disturbance observer for robust vibration suppression, Nonlinear Dynamics, 38(1-4), 355-367.
  19. [19]  Dzielinski, A. and Sierociuk, D. (2006), Observer for discrete fractional order state-space systems, In 2nd IFAC Workshop on Fractional Differentiation and its Applications, 511 - 516, July 2006.
  20. [20]  Ndoye, I., Darouach, M., Voos, H., and Zasadzinski, M. (2013), Design of unkown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science, 23(3), 491-500.
  21. [21]  Podlubny, I. (1998), Fractional Differential Equations, 1 edition, Academic Press, New York.
  22. [22]  Das, S. (2008), Functional Fractional Calculus for System Identification and Controls, Springer-Verlag, Berlin & Heidelberg.
  23. [23]  Podlubny, I. (2002), Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus & Applied Analysis, 5(4), 376-386.
  24. [24]  Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., and Feliu-Batlle, V. (2010), Fractional-order Systems and Controls: Fundamentals and Applications, Springer, Berlin.
  25. [25]  Efe, M.O. (2008), Fractional fuzzy adaptive sliding-mode control of a 2-dof direct-drive robot arm, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38(6), 1561-1570.
  26. [26]  Li, Y., Chen, Y., and Podlubny, I. (2009), Mittag-leffler stability of fractional order nonlinear dynamic systems, Automatica, 45(8), 1965-1969.
  27. [27]  Li,Y., Chen, Y., and Podlubny, I. (2010), Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mittag-leffler stability, Computers & Mathematics with Applications, 59(5), 1810-1821.
  28. [28]  Farges, C., Moze, M., and Sabatier, J.(2010), Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica, 46(10), 1730-1734.
  29. [29]  Hartley, Tom T. and Lorenzo, Carl F. (2002), Dynamics and control of initialized fractional-order systems, Nonlinear Dynamics, 29(1-4), 201-233.
  30. [30]  Darouach,M. (2001), Linear functional observers for systems with delays in state variable, IEEE Transactions on Automatic Control, 46, 491-496.
  31. [31]  Rao, C.R. and Mitra, S.K. (1972), Generalized Inverse of Matrices and Its Applications, John Wiley and Sons Inc.
  32. [32]  Lu, J.G. and Chen, Y. (2010), Robust stability and stabilization of fractional-order interval systems with the fractional order α: The 0 <α< 1 case, IEEE Transactions on Automatic Control, 55(1), 152-158, January 2010.