Journal of Applied Nonlinear Dynamics
Unknown Input Observer Design for Linear Fractional-Order Time-Delay Systems
Journal of Applied Nonlinear Dynamics 4(2) (2015) 117--130 | DOI:10.5890/JAND.2015.06.002
Y. Boukal$^{1}$,$^{2}$, M. Darouach$^{1}$, M. Zasadzinski$^{1}$, N.E. Radhy$^{2}$
$^{1}$ Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN UMR-7039, CNRS), IUT de Longwy, 186 rue de Lorraine 54400, Cosnes et Romain, France
$^{2}$ Université Hassan II, Faculté des Sciences Ain-Chock, Laboratoire Physique et Matériaux Micro électronique Automatique et Thermique BP: 5366 Maarif, Casablanca 20100, Morocco
Download Full Text PDF
Abstract
This paper considers unknown input functional fractional order observer design for fractional-order linear time-invariant (LTI) systems with a constant time delay. After given the existence conditions of such observer, based on the fractional order Lyapunov stability approach, a sufficient condition for the asymptotic stability of the estimation error is given in a linear matrix inequality (LMI) formulation. The obtained results are illustrated by a numerical example.
References
-
[1]  | Battaglia, J.L., Ludovic, L.L., Batsale, J.C., Oustaloup, A., and Cois, O. (2000), Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction, International Journal of Thermal Sciences, 39(3), 374-389, |
-
[2]  | Darling, R. and Newman, J. (1997), On the short-time behavior of porous intercalation electrodes, Journal of The Electrochemical Society, 144(9), 3057-3063. |
-
[3]  | Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, Elsevier. |
-
[4]  | Ortigueira, M.D. and Tenreiro Machado, J.A.(2003), Editorial: fractional signal processing and applications, Signal Process, 83(11), 2285-2286. |
-
[5]  | Sabatier, J., Agrawal, O.P., and Tenreiro Machado, J.A. (2007), Advances in Fractional Calculus, Springer, 2007. |
-
[6]  | Sheng, H., Chen, Y., and Qiu, T. (2012), Fractional Processes and Fractional-Order Signal Processing-Techniques and Applications, Springer, Berlin. |
-
[7]  | Vinagre, B.M.(2001), Modeling and Control of Dynamic Systems characterized by Integro-differential Equations of Fractional Order, PhD thesis, University of Distance Education, Spain. |
-
[8]  | Myshkis, A. and Kolmanovskii, V. (1999), Introduction to the Theory and Applications of Functional Differential Equations, Dordrecht, Kluwer academy. |
-
[9]  | Niculescu, S.I. (2001), Delay Effects on Stability : A Robust Control Approach, In lecture notes in control and information sciences, Springer, Berlin. |
-
[10]  | Mihailo, P.L. and Aleksandar, M.S. (2009), Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach, Mathematical and Computer Modelling, 49(3-4), 475-481 |
-
[11]  | L. Liqiong and Z. Shouming. (2010), Finite-time stability analysis of fractional-order with multi-state time delay, International Journal of Information and Mathematical Sciences, 6(4), 237-240. |
-
[12]  | Bus lowicz, M. (2008), Stability of linear continuous-time fractional order systems with delays of the retarded type, Bulletin Of The Polish Academy Of Sciences Technical Sciences, 56(4), 237-240. |
-
[13]  | Bonnet, C. and Partington, J.R. (2001), Stabilization of fractional exponential systems including delays. Kybernetika, 37, 345-353. |
-
[14]  | Bonnet, C. and Partington, J.R. (2002), Analysis of fractional delay systems of retarded and neutral type. Automatica, 38(7), 1133-1138. |
-
[15]  | Chyi, H. and Cheng, C.Yi. (2006), A numerical algorithm for stability testing of fractional delay systems, Automatica, 42(5), 825-831. |
-
[16]  | X. Lianglin, Z.Yun, and J.Tao (2011), Stability analysis of linear fractional order neutral system with multiple delays by algebraic approach, World Academy of Science, Engineering and Technology, 52, 983-986. |
-
[17]  | Boukal, Y., Radhy, N.E., Darouach, M., and Zasadzinski, M. (2013), Design of full and reduced orders observers for linear fractional-order systems in the time and frequency domains, In 3nd International Conference on Systems and Control, ICSC 2013. |
-
[18]  | Chen,Y. Vinagre, BlasM., and Podlubny, I. (2004), Fractional order disturbance observer for robust vibration suppression, Nonlinear Dynamics, 38(1-4), 355-367. |
-
[19]  | Dzielinski, A. and Sierociuk, D. (2006), Observer for discrete fractional order state-space systems, In 2nd IFAC Workshop on Fractional Differentiation and its Applications, 511 - 516, July 2006. |
-
[20]  | Ndoye, I., Darouach, M., Voos, H., and Zasadzinski, M. (2013), Design of unkown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science, 23(3), 491-500. |
-
[21]  | Podlubny, I. (1998), Fractional Differential Equations, 1 edition, Academic Press, New York. |
-
[22]  | Das, S. (2008), Functional Fractional Calculus for System Identification and Controls, Springer-Verlag, Berlin & Heidelberg. |
-
[23]  | Podlubny, I. (2002), Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus & Applied Analysis, 5(4), 376-386. |
-
[24]  | Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., and Feliu-Batlle, V. (2010), Fractional-order Systems and Controls: Fundamentals and Applications, Springer, Berlin. |
-
[25]  | Efe, M.O. (2008), Fractional fuzzy adaptive sliding-mode control of a 2-dof direct-drive robot arm, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38(6), 1561-1570. |
-
[26]  | Li, Y., Chen, Y., and Podlubny, I. (2009), Mittag-leffler stability of fractional order nonlinear dynamic systems, Automatica, 45(8), 1965-1969. |
-
[27]  | Li,Y., Chen, Y., and Podlubny, I. (2010), Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mittag-leffler stability, Computers & Mathematics with Applications, 59(5), 1810-1821. |
-
[28]  | Farges, C., Moze, M., and Sabatier, J.(2010), Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica, 46(10), 1730-1734. |
-
[29]  | Hartley, Tom T. and Lorenzo, Carl F. (2002), Dynamics and control of initialized fractional-order systems, Nonlinear Dynamics, 29(1-4), 201-233. |
-
[30]  | Darouach,M. (2001), Linear functional observers for systems with delays in state variable, IEEE Transactions on Automatic Control, 46, 491-496. |
-
[31]  | Rao, C.R. and Mitra, S.K. (1972), Generalized Inverse of Matrices and Its Applications, John Wiley and Sons Inc. |
-
[32]  | Lu, J.G. and Chen, Y. (2010), Robust stability and stabilization of fractional-order interval systems with the fractional order α: The 0 <α< 1 case, IEEE Transactions on Automatic Control, 55(1), 152-158, January 2010. |