Journal of Applied Nonlinear Dynamics
Fractional Modeling of Driver’s Dynamics. Part2: Set Membership Approach
for Steering Feel and Visual Feedback
Journal of Applied Nonlinear Dynamics 3(3) (2014) 215--226 | DOI:10.5890/JAND.2014.09.002
Firas Khemane, Rachid Malti†, and Xavier Moreau
Universit´e de Bordeaux, Laboratoire de l’Int´egration du Mat´eriau au Syst`eme – UMR-CNRS 5218
351 cours de la lib´eration – 33405 Talence, France
Download Full Text PDF
Abstract
This paper is the second part of a study related to modeling drivers
dynamics in the overall driving loop in the context of disturbance
rejection and trajectory tracking. After a brief description of the
experimental set-up, a fractional model for steering feel and visual
feedback cases are proposed, and their parameters estimated. As
expected in human reaction, data recorded from different experiments
present a considerable dispersion, due to varying human reactions
from one experiment to another. Such time-variant systems can be
modeled using set membership methods which allow identifying a set
of feasible models for healthy persons.
References
-
[1]  | Wakita, T., Ozawa, K., Miyajima, C., Igarashi, K., Itou, K., Takeda, K., and Itakaru, F. (2005), Driver |
-
[2]  | Amberkar, S., Bolourchi, F., Demerly, J., and Millsap, S. (2004), A control system methodology for steer |
-
[3]  | Van Der Helm, F.C.T., Schouten, A.C., Vlugt, E.d., and Brouwn, G.G. (2002), Identification of intrinsic |
-
[4]  | Speich, J.E., Shao, L., and Goldfarb, M. (2005), Modeling the human hand as it interacts whith a telemanipulation |
-
[5]  | Copot, C., Ionescu, C.M. , and DeKeyser, R. (2013), Fractional order level control of a system with communicating |
-
[6]  | Abi, R., Daou, Z., Moreau, X., and Francis, C. (2013), Control of a hydro-electromechanical system using |
-
[7]  | Erjaee, G.H., Ostadzad, M.H., Okuguchi, K., and Rahimi, E. (2013), Fractional differential equations system |
-
[8]  | Bazargan, A.H., Mehrandezh, M., and Dai, L. (2013), On dynamics and control of an adaptable wheeled |
-
[9]  | Mathieu, B., Oustaloup, A., and Levron, F. (1995), Transfer function parameter estimation by interpolation |
-
[10]  | Le Lay, L. (1998), Identification fr´equentielle et temporelle par mod`ele non entier, PhD thesis, Universit´e |
-
[11]  | Val´erio, D., and da Costa, J.S.(2007), Advances in Fractional Calculus Theoretical Developments and Applications |
-
[12]  | Khemane, F., Malti, R., Thomassin, M., and Ra¨ıssi, T. (2008), Set membership estimation of fractional |
-
[13]  | Malti, R., Ra¨ıssi, T., Thomassin, M., and Khemane, F. (2009), set membership parameter estimation |
-
[14]  | Khemane, F., Malti, R., Ra¨ıssi, T., and Moreau, X. (2012), Robust estimation of fractional models in the |
-
[15]  | Khemane, F., Malti, R., Moreau, X., Ra¨ıssi, T., and Thomassin, M. (2010), Comparison between two set |
-
[16]  | Moreau, X., Khemane, F., Malti, R., and Mermoz, J.L. (2011), Fractional modeling of driver’s dynamics. |
-
[17]  | Matignon, D. (1998), Stability properties for generalized fractional differential systems. ESAIM proceedings - Syst`emes Diff´erentiels Fractionnaires - Mod`eles, M´ethodes et Applications, 5. |
-
[18]  | Moore, R.E. (1966), Interval analysis, Prentice-Hall, Englewood Cliffs, NJ. |
-
[19]  | Bendat, J.S., and Piersol, A.G. (2000), Random Data Analysis and Measurement Procedures, Wiley Series |
-
[20]  | Antoni, J. and Schoukens, J. (2007), A comprehensive study of the bias and variance of frequency-responsefunction |
-
[21]  | Jaulin, L. and Walter, E. (1993), Set inversion via interval analysis for nonlinear bounded-error estimation, |
-
[22]  | Chabert, G. and Jaulin, L. (2009), Contractor programming, Artificial Intelligence. |
-
[23]  | Jaulin, L. and Chabert, G. (2008), Quimper : un langage de programmation pour le calcul ensembliste; |
-
[24]  | Reynet, O., Jaulin, L., and Chabert, G. (2009), Robust tdoa passive location using interval analysis and |