Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Soliton Solutions for the Modified KdV6, Modified (2+1)-dimensional Boussinesq, and (3+1)-dimensional KdV Equations

Journal of Applied Nonlinear Dynamics 3(1) (2014) 95--104 | DOI:10.5890/JAND.2014.03.008

Abdul-Majid Wazwaz

Department of Mathematics, Saint Xavier University. Chicago, IL 60655

Download Full Text PDF

 

Abstract

We study soliton solutions for a modified KdV6 equation, modified Boussinesq equation, and KdV equation in (1+1), (2+1) and (3+1) dimensions respectively. Three distinct new dependent variable trans- formations are combined with the simplified form of Hirota’s direct method is used to achieve these soliton solutions. One soliton solution is formally established for each equation together with its associated dispersion relation and dispersion variable.

References

  1. [1]  Ma, W.X. (2003), Integrable couplings and matrix loop algebra, AIP Conference Proceedings edited by W. X. Ma and D. Kaup,: Nonlinear and Modern Mathematical Physics, 1562, 105-122 (American Institute of Physics, Melville, NY.
  2. [2]  Ma, W.X., Abdeljabbar, A., and Asaad, M.G. (2011), Wronskian and Grammian solutions to a (3+1)- dimensional generalized KP equation, Appl. Math. Comput., 217, 10016-10023.
  3. [3]  Ma, W.X. and Zhu, Z.N. (2012), Solving the (3+1)-dimensional KP and BKP equations by the multiple exp-function algorithm, Applied Mathematics and Computation, 218, 11871-11879.
  4. [4]  Wazwaz, A.M. (2013), Three higher-dimensional Virasoro integrable models: multiple soliton solutions, AIP Conference Proceedings edited by W. X. Ma and D. Kaup,: Nonlinear and Modern Mathematical Physics, 1562, 194-202 (American Institute of Physics, Melville, NY.
  5. [5]  Karsau-Kalkani, A., Karsau, A., Sakovich, A., Sarkovich, S., and Turhan, R. (2008), A new integrable generalization of the Korteweg-de Vries equation, Journal of Mathematical Physics, 49(7), 1-10.
  6. [6]  Kupershmidt, B. (2008), KdV6: An integrable system, Physics letters A, 372, 2634-2639.
  7. [7]  Wazwaz, A.M. (2008), The integrable KdV6 equations: Multiple soliton solutions and multiple singular soliton solutions, Applied Mathematics and Computation, 204, 963-972.
  8. [8]  Wazwaz, A.M. (2011), Multiple soliton solutions for a new coupled Ramani equation, Physica Scripta 83, 015002.
  9. [9]  Zhang, Y., Dang, X.-L., and Xa, H.-X. (2011), Bäcklund transformations and soliton solutions for the KdV6 equation, Applied Mathematics and Computation, 217, 6230-6236.
  10. [10]  Zhang, Y., Cai, X.-L., and Xa, H.-X. (2009), A note on "The integrable KdV6 equation: Multiple soliton solutions and multiple singular soliton solutions", Applied Mathematics and Computation, 214, 1-3.
  11. [11]  Matsukawa, M. and Watanabe, S. (1988), N-Soliton solutions of two dimensional Modifies Boussinesq equation, Journal of the Mathematical Society of Japan, 57(9), 2936-2940.
  12. [12]  Matsukawa, M., Watanabe, S., and Tanaka, H. (1989) , Soliton solution of generalized 2D Boussinesq equatio equation with quadrature and cubic nonlinearity, Journal of the Mathematical Society of Japan , 58(3), 827-830.
  13. [13]  Wazwaz, A.M. (2007), Multiple-soliton solutions for the Boussinesq equation, Applied Mathematics and Computation, 192, 479-486.
  14. [14]  Wazwaz, A.M. (2006), New hyperbolic schemes for reliable treatment of Boussinesq equation, Physics Letters A, 358, 409-413.
  15. [15]  Lou, Senyue (1997), Higher dimensional integrable models with a common recursion operator, Communications in Theoretical Physics, 28, 41-50.
  16. [16]  Baldwin, D. and Hereman, W. (2010), A symbolic algorithm for computing recursion operators of nonlinear partial differential equations, International Journal of Computer Mathematics , 87 (5),1094-1119.
  17. [17]  Fokas, A.S. (1987), Symmetries and integrability, Studies in Applied Mathematics , 77, 253-299.
  18. [18]  Olver, P.J. (1977), Evolution equations possessing infinitely many symmetries, Journal of Mathematical Physics, 18(6), 1212-1215.
  19. [19]  Sanders, J.A. and Wang, J.P. (2001), Integrable systems and their recursion operators, Nonlinear Analysis, 47, 5213-5240.
  20. [20]  Wang, J.P. (2002), A list of 1+1 dimensional integrable equations and their properties, Journal of Nonlinear Mathematical Physics, 9, 213-233.
  21. [21]  Hirota, R. (1971), Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27(18), 1192-1194.
  22. [22]  Hereman, W. and Nuseir, A. (1997), Symbolic methods to construct exact solutions of nonlinear partial differential equations, Mathematics and Computers in Simulation, 43, 13-27.
  23. [23]  Magri, F. ( 1980), Lectures Notes in Physics, 120, Springer, Berlin.
  24. [24]  Dehghan, M. and Shokri, A. (2008), A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Mathematics and Computers in Simulation , 79, 700-715.
  25. [25]  Dehghan, M. and Ghesmati, A. (2010), Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM), Computer Physics Communications , 181, 772-786.
  26. [26]  Dehghan, M. and Ghesmati, A. (2010), Application of the dual reciprocity boundary integral equation technique to solve the nonlinear Klein ordon equation, Computer Physics Communications , 181, 1410-1418.
  27. [27]  Wazwaz, A.M. (2009), Partial Differential Equations and Solitary Waves Theory, Higher Education Press and Springer, Peking and Berlin.
  28. [28]  Wazwaz, A.M. (2007), Multiple-soliton solutions for the Boussinesq equation, Applied Mathematics and Computation , 192, 479-486.
  29. [29]  Wazwaz, A.M. (2011), A new generalized fifth order nonlinear integrable equation, Physica Scripta, 83, 035003.
  30. [30]  Wazwaz, A.M.(2011), A new fifth order nonlinear integrable equation: multiple soliton solutions, Physica Scripta, 83, 015012.