Journal of Applied Nonlinear Dynamics
ODE Admitting Two-dimensional Algebras of Dynamic Symmetries
Journal of Applied Nonlinear Dynamics 3(1) (2014) 27--36 | DOI:10.5890/JAND.2014.03.003
M.I. Timoshin
Ulyanovsk State Technical University, Ulyanovsk, Russian Federation
Download Full Text PDF
Abstract
A generalization of S. Lie’s classification of second order ODEs on two-dimensional algebras of point symmetries is constructed. First integrals for found types second order ODEs are reduced. The pos- sibility of the determination of two-dimensional algebras of dynamic symmetries over number field is considered. Interconnection of dy- namic and contact symmetries is demonstrated. On a concrete ex- ample it is shown the procedure of the decomposition of a contact transformation into superposition of point transformation and Leg- endre transformation.
References
-
[1]  | Stephani, H. (1989), Differential Equations: Their Solution Using Symmetries, Cambridge university Press. |
-
[2]  | Timoshin, M.I. (2009), Dynamic symmetries of ODEs, Ufa Mathematical Journal , 1(3), 132–138. |
-
[3]  | Lie, S. (1891), Vorlesugen uber Differentialgeichungen mit bekannten infinitesimalen TransformationenVorlesugen uber Differentialgeichungen mit bekannten infinitesimalen Transformationen, Leipzig: B.G. Teubner. |
-
[4]  | Timoshin, M.I. (2009), Dynamic symmetries of ODEs, Ufa Mathematical Journal , 1(3), 132–138. |
-
[5]  | Goursat, E. (1917), Cours D’analyse mathematique, Gauthier-Villars, Paris, tome 2, part 2. |
-
[6]  | Ibragimov, N.H. (1985), Transformation Groups Applied to Mathematical Physics, Dorbrecht, Reidel. |
-
[7]  | Timoshin, M.I. (2001), Contact symmetries and finite contact transformation, Repots present at international conference ”Mogran” USATU, Ufa Mathematical Journal, 140–143. |
-
[8]  | Timoshin, M.I. (2002), To the Problem of Contact Symmetries Similarity for Ordinary Differential Equations, Reports present at 16 international Symposium on Nonlinear Acoustics Moscow State University , 1, 611–614. |
-
[9]  | Klein, F. (1926), Vorlesungen uber Hohere Geometrie, Verlag Van Julius Springer, Berlin. |