Journal of Applied Nonlinear Dynamics
Traveling Waves, Impulses and Diffusion Chaos in Excitable Media
Journal of Applied Nonlinear Dynamics 1(4) (2012) 407--412 | DOI:10.5890/JAND.2012.07.002
T.V. Karamysheva; N.A. Magnitskii
Institute for Systems Analysis of RAS, Prospec 60-let Oktyabrya, Moscow, Russia
Download Full Text PDF
Abstract
In the present work it is shown, that the FitzHugh-Nagumo type system of partial differential equations with fixed parameters can have an infinite number of different stable wave solutions, traveling along the space axis with arbitrary speeds, and also traveling impulses and an infinite number of different states of spatiotemporal (diffusion) chaos.Those solutions are generated by cascades of bifurcations of cycles and singular attractors according to the FSM theory (Feigenbaum-Sharkovskii-Magnitskii) in the threedimensional system of Ordinary Differential Equations (ODEs), to which the FitzHugh-Nagumo type system of equations with self-similar change of variables can be reduced.
Acknowledgments
The research was supported by the Russian Foundation for Basic Research (projects nos. 11-07-00126a and 12-07-00271a) and the program ONIT RAS (projects nso. 1.9, 3.5).
References
-
[1]  | Riznichenko, G.Y. (2006), Mathematical models in biophysics and ecology(in Russian), Institute of Computer Science, Moscow-Izhevsk. |
-
[2]  | FitzHugh, R.A. (1961), Impulses and physiological states in theoretical model of nerve membrane, Biophys. J., 1, 445-66. |
-
[3]  | Hodgkin, A.L. and Huxley, A.F. (1952), A quantitative description of membrane current and its application conduction and excitation in nerve, J. Physiol, 117, 500-04. |
-
[4]  | Zeeman, E.C. (1972),Differential equations for the heartbeat and nerve impulses. Mathematical Institute, Univer. of Warvick, Coventry. |
-
[5]  | Merkin, J.H., Petrov, V., Scott, SK., and Showalter, K. (1996), Wave-Induced Chemical Chaos, Phys. Rev. Letters, 76 (3), 546-49. |
-
[6]  | Zimmermann, M.G., Firle, S.O., and Natiello, M.A. et al. (1997), Pulse bifurcation and transition to spatio-temporal chaos in an excitable reaction-diffusion model, Physica D., 110, 92-104. |
-
[7]  | Magnitskii, N.A. (2007), Universal theory of dynamic and spatiotemporal chaos in complex systems, Dynamics of complex systems, 1 (1), 18-39. (in Russian). |
-
[8]  | Magnitskii, N.A. and Sidorov, S.V. (2006), New Methods for Chaotic Dynamics, (L. Chua Ed.), World Scientific, Singapore. |
-
[9]  | Magnitskii, N.A. (2008), Universal theory of dynamical chaos in dissipative systems of differential equations, Comm. Nonlin. Science. Numer. Simul, 13, 416-433. |
-
[10]  | Magnitskii, N.A. (2011), Theory of Dynamical Chaos (in Russian), URSS, Moscow. |