Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Asymptotic Analysis of the Hopf-Hopf Bifurcation in a Time-delay System

Journal of Applied Nonlinear Dynamics 1(2) (2012) 159--171 | DOI:10.5890/JAND.2012.05.004

Christoffer R. Heckman$^{1}$; Richard H. Rand$^{2}$

$^{1}$ Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA

$^{2}$ Dept. Mathematics, Dept. MAE, Cornell University, Ithaca, NY 14853, USA

Download Full Text PDF

 

Abstract

A delay differential equation (DDE) which exhibits a double Hopf or Hopf-Hopf bifurcation [1] is studied using both Lindstedt’s method and center manifold reduction. Results are checked by comparison with a numerical continuation program (DDEBIFTOOL). This work has application to the dynamics of two interacting microbubbles.

References

  1. [1]  Guckenheimer, J. and Kuznetsov, Y.A. (2008), Hopf-Hopf bifurcation, Scholarpedia, 3(8), 1856-2008.
  2. [2]  Heckman, C.R., Sah, S.M. and Rand, R.H. (2010), Dynamics of microbubble oscillators with delay coupling, Commun Nonlinear Sci Numer Simulat, 15, 2735-2743.
  3. [3]  Heckman, C.R. and Rand, R.H. (2011), Dynamics of Coupled Microbubbles with Large Fluid Compressibility Delays, Proceedings of the 7th European Nonlinear Dynamics Conference (ENOC 2011), July 24-29, 2011, Rome, Italy.
  4. [4]  Heckman, C.R., Kotas, J. and Rand, R.H. (2012), Center Manifold Reduction of the Hopf-Hopf bifurcation in a Time Delay System, The First International Conference on Structural Nonlinear Dynamics and Diagnosis, April 30-May 2, 2012, Marrakech, Morocco.
  5. [5]  Heckman C.R., Kotas J. and Rand R.H.(to appear), Center Manifold Reduction of the Hopf-Hopf bifur cation in a Time Delay System, Euro. Soc. App. Ind. Math..
  6. [6]  Rand, R.H. (2005), Lecture Notes in Nonlinear Vibrations, version 52, http://www.math.cornell.edu/~rand/randdocs/nlvibe52.pdf
  7. [7]  Rand, R.H. (2011), Differential-Delay Equations, in Luo, A.C.J. and Sun, J-Q. (eds.), Complex Systems: Fractionality, Time-delay and Synchronization, 83-117, HEP-Springer, Beijing-Berlin
  8. [8]  Xu, J., Chung, K.W. and Chan, C.L. (2007), An Efficient Method for Studying Weak Resonant Double Hopf Bifurcation in Nonlinear Systems with Delayed Feedbacks, SIAM J. Applied Dynamical Systems, 6 (1), 29-60.
  9. [9]  Ma, S., Lu, Q. and Feng, Z. (2008), Double Hopf bifurcation for van der Pol-Duffing oscillator with parametric delay feedback control, J. Analysis and Applications, 338, 993-1007.
  10. [10]  Yu, P., Yuan, Y. and Xu, J. (2002), Study of double Hopf bifurcation and chaos for an oscillator with time delayed feedback, Commun. Nonlinear Sci. Numer. Simulat., 7, 69-91.
  11. [11]  Chen, Z. and Yu, P. (2005), Double-Hopf Bifurcation in an Oscillator with External Forcing and Time- Delayed Feedback Control, Proceeding of DETC 2005.
  12. [12]  Buono, P.L. and Bèlair, J. (2003), Restrictions and unfolding of double Hopf bifurcation in functional differential equations, J. Diff. Eq., 189, 234-266.
  13. [13]  Kalmár-Nagy, T., Stépán, G. and Moon, F.C. (2001), Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations, Nonlinear Dynamics, 26, 121-142.
  14. [14]  Guckenheimer, J. and Holmes, P. (1983), Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York.
  15. [15]  Engelborghs, K., Luzyanina, T., Samaey, G., Roose, D. and Verheyden, K., DDE-BIFTOOL, available from http://twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml